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Abstract. Screening for Autism Spectrum Disorder (ASD) is an im-
portant yet challenging task. Traditional screening tools, such as ques-
tionnaires and other technical methods, face difficulties in large-scale
implementation, such as primary healthcare and home monitoring set-
tings. To address this issue, we develop a smartphone application to
highlight atypical eye movement behaviors in children with ASD and
extract multi-modal features, including eye movements, head pose, and
emotional expressions, from smartphone videos to characterize the sub-
jects’ viewing behavior. Additionally, we propose a multi-modal pro-
gressive fusion framework to comprehensively integrate the relationships
between different modalities. The progressive fusion strategy combines
multi-modal features at multiple scales to achieve attention-based deep
fusion. Moreover, we develop a global intra- and inter-modality inter-
action (GIIMI) module to enhance competition and interaction within
and between modalities. In the experiment, we constructed a smartphone
video dataset of 124 children aged 3 to 6 years and validated the perfor-
mance advantages of the proposed algorithm.

Keywords: Screening of Autism Spectrum Disorder (ASD) - Multi-
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1 Introduction

Autism Spectrum Disorder (ASD) is a complex neurodevelopmental condition
characterized by deficits in social communication, repetitive behaviors, and re-
stricted interests [16]. Research indicates that the prevalence of ASD has been
steadily increasing, placing greater pressure on healthcare, education, and so-
cial systems, while also adding emotional and financial burdens to families [17].
Early screening and intervention are essential for mitigating the symptoms of
ASD and reducing its long-term impacts. Currently, ASD screening primarily
relies on scales that assess social interaction, language communication, and re-
lated abilities through clinician-to-child observations. However, these traditional
methods typically require trained professionals, which makes it challenging to
implement widespread and effective screenings, particularly in rural or under-
resourced areas with limited access to healthcare facilities [30,31].
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Recently, other advanced technologies such as functional magnetic resonance
imaging (fMRI) [1, 2,7, 11], electroencephalography (EEG) [8,21], virtual re-
ality [24], eye movement [10, 33|, and skin conductance [25] have increasingly
been employed as complementary tools for the objective identification of ASD.
Despite more objective and accurate results, their widespread adoption in large-
scale primary healthcare or home monitoring remains limited due to high costs
or operational complexity. Furthermore, previous multi-modal approaches [8,14]
often required specialized devices to collect data from multiple modalities, which
further escalated screening costs. In recent years, the widespread use of mobile
devices, particularly smartphones, has prompted research into mobile-based ASD
screening [27]. Mobile screening can not only improve coverage in rural or un-
derdeveloped areas but also address the growing need for remote ASD research,
especially in contexts where offline interactions are limited.

Therefore, researchers have explored various approaches for mobile-based
ASD screening. For instance, Dow et al. [6] proposed a remote method that al-
lows parents or non-professionals to interact with children, while clinicians assess
ASD symptoms by observing social, communicative, and repetitive behaviors in
these interactions. Tariq et al. [27] approached ASD screening through children’s
behavioral videos, where three non-professional evaluators scored the videos on
multiple items as the features for classifier training. Deveau et al. [5] introduced
a mobile game-based ASD identification method, in which children imitate ex-
pressions based on smartphone prompts, and classification is performed based
on parents’ guesses. Perochon et al. [22] presented a tablet-based early screening
model for children under 3 years old, where a parent held their child on their
lap to watch movies and participate in a bubble-popping game. In this study,
we propose a smarthphone-based, multi-modal ASD recognition paradigm that
employs a simple eye-tracking experiment to create a child-friendly, low-cost,
and convenient screening method. Specifically, we first design an application that
highlights abnormal behaviors in children with ASD. We employ social-geometric
contrast scenes to emphasize the atypical eye movements for non-social stimulus
preferences of children with ASD. At the same time, we integrate facial expres-
sions and head pose to provide a more comprehensive encoding of the subject’s
free-viewing behavior.

Furthermore, we propose a multi-modal progressive deep fusion framework
to integrate the multi-modal correlations at different time scales. Traditional
multi-modal ASD screening methods typically rely on post-processing tech-
niques [8,14, 22|, where features are concatenated or directly input into a clas-
sifier, without leveraging the potential of multi-scale feature interaction and
fusion. To address this, we first introduce a hybrid CNN-Transformer (CNN-
Trans) encoder to extract both local transient changes and global behavioral
patterns from long time-series data, such as eye and head pose. Then, we design
a progressive fusion module for deep cross-modality integration, using a multi-
scale approach that captures both fine-grained and coarse-grained interactions.
At each scale, we propose a global intra- and inter-modality interaction (GI-
IMI) module to integrate modality interactions. This mechanism concatenates
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Fig. 1. Data collection via smartphone. (a) Experimental setup for video data collec-
tion. (b) Stimuli and time allocation in the smartphone-based test.

keys and values from two modalities to calculate intra- and inter-modality in-
teractions in a unified manner, enabling adaptive fusion of information within
and between modalities. Additionally, we introduce an emotion-enhanced fusion
(EEF) module to better utilize the correlation between emotional features and
eye movements. Finally, the three fused features are aggregated using learnable
weights, and cross-entropy loss is employed for classification.

Our main contributions are as follows: (1) We introduce a low-cost, scalable,
smartphone-based ASD screening framework that leverages a child-friendly eye-
tracking experiment to collect video data and extracts multi-modal features to
characterize viewing behavior. (2) We propose a progressive fusion framework
that employs a multi-scale fusion strategy and incorporates the GIIMI and EEF
modules to adaptively integrate intra- and inter-modality interactions at multiple
scales. (3) We construct a mobile-based ASD identification dataset using an
Android application and achieve an average accuracy of 86.96%, outperforming
state-of-the-art classification models.

2 Video Data Acquisition

Participants and Experimental Scenario. We constructed the dataset using
a smartphone-based platform in collaboration with multiple hospitals and reha-
bilitation centers. A total of 63 children with ASD and 61 typical development
(TD) children, aged between 3 and 6, were recruited for data collection. Chil-
dren with hearing or visual impairments were excluded from the study. All ASD
participants were diagnosed by experienced clinicians and met the diagnostic
criteria for ASD according to the Diagnostic and Statistical Manual of Mental
Disorders, Fifth Edition (DSM-V). The experimental scenario is shown in Fig. 1
(a). During data collection, the mobile phone was placed horizontally, with the
subjects seated approximately 0.5 meters away from the device. While the video
played, the mobile phone’s camera recorded the subjects’ head and facial data.
Stimuli. To achieve more accurate eye movement estimation, we designed a
calibration phase, as shown in Fig. 1 (b). The calibration consists of two parts
to ensure uniform screen coverage and to collect smooth calibration data [13,28].
In the first part, 20 points randomly flash on the screen, each displayed for 1.8
seconds, with sizes ranging from 18 to 50 pixels. The second part involves a green
dot moving across the screen in a predefined zigzag pattern.



4 Zhong et al.

’
v — - Yyl = - ;
T 3|, - =z 1
7 —||zllz|[z| 5l 2 ELzlzhz B E
(s} gl ¥ & < = (
7 L L_ 1 n U ke '
' — == 1 || & | '
Eye Movement G Hybrid CNN-Trans: K, V,—/ GIIMI s s : -
K,V, = = I
| 8 & ) R U R U I i}
[ — — N |
] AN - = 1 =]
z E 1 s 3 AREARP 1 2
—l|z 2l > 2 EEMZP A — — — — — — | £
B 5|, Sl Qi [L & ~ 5
L] :_ . 1N e L Z Z U F, &
1 L = = 1 2
Head Pose P Hybnd CNN-Trans, i i) X g
1 Rl ettt 1
[ — | ' e ] ]
— —/ /o
M ml B 1 £ 1
z|l |z] |z[l! g i PAREARPS | B T = !
B — =5 =)
: g g z | — 5 Q. § S E P45 —:—» o — & — / —_—
Emotion - ], Fe: UJ © 1 z F, —
Histogram E 1 — volal =l 1
8 y ! U T i ! |
1 i 5 <

Emotion Encoder

Fig. 2. Framework of the proposed method. First, we extract eye movements, head
pose, and emotion data from the recorded video. A hybrid CNN-Trans encoder and an
emotion encoder are then used to extract multi-modal features. Finally, the progressive
fusion framework employs the GIIMI and EEF modules to deeply fuse these modalities
at multiple scales for classification.

In the testing phase, each subject watches a 2-minute video. Children with
ASD and TD children exhibit significant differences in attention to geometric
patterns and social scenes [23]. To highlight these attention differences, we se-
lected the contrast scenes as stimuli. Specifically, in the first minute, clips of
children playing with balloons are shown on the left side, while the right side
displays a geometric transformation scene. In the second minute, we swap the
positions of the scenes to control for any directional bias.

3 Methodology

The overall architecture of the proposed method is shown in Fig. 2. We first ex-
tract multi-modal cues from the collected video and then employ a hybrid CNN-
Trans encoder and an emotion encoder to extract multi-modal features (Sec-
tion 3.1). Subsequently, a progressive fusion framework integrates these features
through two key components: the GIIMI module, which fuses eye movements
and head pose data, and the EEF module, which enhances emotion features at
multiple scales (Section 3.2).

3.1 Multi-modal Data Collection and Feature Extraction

Gaze Estimation. Children with ASD display atypical attention patterns, typ-
ically showing a preference for non-social stimuli when compared to TD chil-
dren [12]. To characterize these attention behaviors, it is crucial to first cap-
ture eye movement data from mobile devices. We employ the gaze estimation
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method [32] on the video V € RZXWXT t5 estimate the subject’s eye movement.
Specifically, we first perform landmark detection to crop eye images I, and face
images Ir. These cropped images, along with the corresponding landmark fea-
tures L, are then used to estimate gaze and represent eye movement behavior.
This process can be summarized as follows:

G =G(I.,1I;, L) € RT*2 (1)

where G represents the gaze coordinates for the stimuli, and G(-) denotes the
gaze estimation model.

Head Pose Estimation. In social interactions, individuals with ASD may dis-
play atypical head pose, such as involuntary head tilting or increased displace-
ment and velocity [18]. These behaviors can lead to distinct patterns in yaw
and pitch angles in response to external stimuli. Therefore, we also analyze head
poses from video recordings for behavior encoding, as they capture the key cues
of head pose. We perform head pose estimation H(-) using the landmark-based
model to analyze these movement differences as follows:

P =H(V) e RT*3, (2)

where P represents the head posture angles, including pitch, yaw, and roll.
Emotion Recognition. Facial expressions are a crucial form of non-verbal com-
munication in social interactions, and individuals with ASD often face difficulties
in emotional recognition and expression [3,19]. Therefore, we perform emotion
recognition £(+) on the video V to obtain the emotion results for subjects, per-
formed frame by frame, encompassing the emotions: anger, disgust, fear, happi-
ness, sadness, surprise, and neutrality. Emotion recognition is performed using a
ResNet-18 model trained on the FER2013 dataset. We further compress the emo-
tion recognition results into an emotion histogram E = Histogram(£(V)) € R”
to obtain a more comprehensive and robust representation.

Hybrid CNN-Trans Encoder. Eye movement and head pose represent long
time series that contain rich information [26], both in local transient changes and
global behavioral patterns. Therefore, we propose a hybrid CNN-Trans encoder
HybridCNNTrans(-) to capture the local transient changes and global behavior
patterns of eye movement and head pose, which can be summarized as follows:

F, = HybridCNNTrans(G), F;, = HybridCNNTrans(H), (3)

where F, and F), denote the eye movement features and head pose features,
respectively. Furthermore, we utilize an emotion encoder, which combines linear
and convolutional operations to extract emotion feature F..

3.2 Multi-Modal Progressive Fusion

Multi-Scale Progressive Fusion. The extracted data exhibit heterogeneous
information across different modalities. Most previous works rely on late fu-
sion [20], which ignores the temporal alignment of features. In contrast, we pro-
pose a progressive fusion module that extracts features at multiple temporal
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scales and enables deep fusion of multi-modal interactions at the correspond-
ing scale. Specifically, we first extract multi-scale features from each modality
along the temporal dimension. Then, multi-modal cross-attention calculations
are performed at each temporal scale. This process can be described as follows:

F = DownSampling(Fusion(F, F’)), (4)

where DownSampling(-) represents the downsampling operation using convolu-
tional layers to reduce the resolution of features. This variation in feature reso-
lution across blocks ensures the alignment of features at different scales, which
is crucial for effective deep fusion. Fusion(-) refers to the proposed fusion module
that fuses the feature F and F’.

Global Intra- and Inter-Modality Interactions. Existing methods typically
perform intra- and inter-modality interactions separately [8,14], which ignores
the trade-offs between these two types of interactions. In this study, we propose
a novel approach that simultaneously models intra- and inter-modality inter-
actions to adaptively balance between them. Taking the calculation under the
eye movement modality as an example, we first map the eye movement features
using a linear layer to obtain the query Qg, key K, and value V. Addition-
ally, we extract the head pose features to generate the key K; and value V.
Next, we concatenate the eye movement key K, with the head pose key K, and
the eye movement value V, with the head pose value Vj,. A hybrid attention
mechanism, HybridAtt, is then applied to compute the attention map as follows:

Q- cat(K;,K;';)
Vi

= [SelfAttMap, CrossAttMap] [‘\;g} ,
h

HybridAtt = softmax < ) cat(Vy, Vy,)

()

where cat(-) represents the concatenation operation along the sequence length
dimension. softmax(-) and dj denote the softmax operation and the channel
dimension, respectively. In this process, we compute the intra-similarity using
Q- K;— to obtain the self-attention score, and the inter-similarity using Q- K}T
to obtain the cross-attention score. Then, we proceed with the conventional
calculation steps as follows:

F|, = LayerNorm(F, + HybridAtt(F,, F},))

y 6
F, = LayerNorm(F, + FeedForward(Fy)). ©)

where LayerNorm(-) and FeedForward(-) denote the layer normalization and the
multi-layer feedforward network, respectively.

Furthermore, due to the inherent correlation between eye movements and
emotion, eye movements can enhance emotion recognition more effectively. To
leverage this relationship, we propose an emotion-enhanced fusion method that
integrates the emotion histogram with eye movements. Specifically, we use the
emotion query Q. together with the eye movement key K, to compute the
attention map.
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Table 1. Comparison of the proposed method with baselines.

Methods Accuracy ‘ Precision ‘ Recall ‘ F1l-score
Percentage of Different Scenes 0.6297 0.6306 0.6231 0.6232
X and Y Coordinates 0.6440 0.6405 0.6385 0.6337
Distance from the Center 0.5557 0.5451 0.5923 0.5653
Saccadic Amplitude 0.6373 0.5988 0.8192 0.6887
Changes in Saccadic Direction 0.6207 0.6837 0.6654 0.5674
Percentage of Saccadic Direction 0.6850 0.7456 0.5564 0.6352
APM [4] 0.7747 0.8833 0.6215 0.7257
DVP [30] 0.7743 0.8440 0.6703 0.7457
GPF [34] 0.7340 0.7422 0.7333 0.7311
SOFT [9] 0.7391 0.7143 0.8333 0.7692
iTransformer [15] 0.7826 1.0000 0.6429 0.7826
Proposed 0.8696 | 0.7857 | 1.0000 | 0.8800

Classification Head. After the intra- and inter-modality fusion, we apply a
learnable weight to combine the features from three modalities. We then use a
multilayer perceptron (MLP) as a classification head to classify the subjects.
Additionally, we employ cross-entropy loss to optimize the model and obtain the
classification results.

4 Experiment

Implementation Details. The smartphone screen has a resolution of 1280x 720
pixels, while the collected video V has a resolution of 1080x1920. For gaze es-
timation, we resized eye images to 112x112 pixels and face images to 224 x224.
The hybrid CNN-Trans encoder consists of three convolutional layers followed
by a Transformer block. The emotion encoder includes a linear layer and three
convolutional layers. In the multi-modal progressive fusion strategy, the feature
dimensions for the three stages are 256, 128, and 64, respectively. We used a
batch size of 64 and train the model for 10 epochs. The initial learning rate is
set to 1 x 1073, with a weight decay of 5 x 1073. We employed stratified five-
fold cross-validation to evaluate performance. All experiments were conducted
in PyTorch, using the Adam optimizer.

Evaluation Metrics. To comprehensively evaluate the models, we used four
metrics: accuracy, precision, recall, and F1-score. Precision measures the pro-
portion of true positives among all predicted positives, while recall reflects the
model’s ability to identify all actual positive instances. To balance the trade-off
between precision and recall, we compute the F1-score, which provides a harmo-
nized metric that captures both aspects of model performance.

Performance Comparison. We compare the proposed method with several
baseline models, as shown in Table 1. Specifically, we evaluate it against a range
of statistical methods [12,29] and state-of-the-art deep learning models, including
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Table 2. Ablation studies on the impact of modality utilization.

i ‘Eye Movement Head Pose Emotion‘Accuracy‘Precision‘Recall‘Fl-score

(a) v 0.6761 0.7297 |0.6426 | 0.6686
(b) v 0.7181 0.6936 |0.8233| 0.7490
(c) v 0.7177 0.7872 |0.6247| 0.6922
(d) v v v 0.8696 0.7857 | 1.000 | 0.8800

Table 3. Ablation studies on the proposed module. “PF” represents the progressive
fusion strategy. “Fusion” represents the GIIMI and EEF modules.

id ‘ CNN-Trans Fusion PF ‘ Accuracy ‘ Precision ‘ Recall ‘ F1-score

(a) 0.7391 0.7273 0.7273 0.7273
(b) v v 0.8261 0.8182 0.8182 0.8182
(c) v v 0.7826 0.8571 0.8000 0.8276
(d) 4 4 0.7500 0.7059 0.9231 0.8000
(e) v v v 0.8696 0.7857 1.000 0.8800

APM [4], DVP [30], GPF [34], SOFT [9], and iTransformer [15]. The experimen-
tal results demonstrate that our method achieves an accuracy of 86.96% and
the highest F1-score, surpassing existing approaches. The superior recall perfor-
mance underscores the method’s capability to reduce the likelihood of missed
diagnoses. These findings highlight the potential of our framework as a robust
and effective tool for ASD screening.

Ablation Study. First, as shown in Table 2, we evaluate the performance of
individual signal modalities to validate the effectiveness of multi-modal fusion.
The results indicate that combining data from different modalities can improve
the encoding of viewing behavior and uncover hidden ASD features, thereby im-
proving recognition accuracy. On the other hand, we evaluate the contribution of
each module. As shown in Table 3, removing any module results in performance
degradation, indicating that each module plays a crucial role in the overall im-
provement. For instance, the model without “Fusion” (d) reverts to traditional
late fusion model, causing a 11.96% drop in accuracy. This underscores the im-
portance of exploring and leveraging the correlations among different modalities.

5 Conclusion

In this study, we propose a scalable, multi-modal, and at-home ASD screening
framework that captures participant videos using smartphone cameras. Based
on the core characteristics of ASD, we extract three distinct modalities: eye
movements, head pose, and emotion. Furthermore, we develop a multi-modal
progressive fusion model with hierarchical feature integration across different
scales. The proposed GIIMI and EEF modules leverage intra- and inter-modality
interactions to enhance modal complementarity. Experimental results demon-
strate significant improvements in recognition accuracy compared to previous



Multi-Modal Progressive Fusion for ASD Screening Using Smartphone Video 9

methods, offering a promising foundation for more accessible and efficient ASD
detection in real-world settings.
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