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Abstract. Medical image segmentation is critical for accurate diagnosis;
however, the task remains challenging due to the inherent ambiguities in
low-contrast anatomical boundaries and the presence of extensive redun-
dant features in the skip connections of segmentation models. To address
these limitations, we propose ReSeg-UNet, a novel two-stage framework
that synergizes image reconstruction with segmentation optimization.
In the first stage, a composite reconstruction loss—combining Mean
Squared Error (MSE) and L1 regularization—is applied to a standard
segmentation network, generating stable reconstruction weights that en-
code multi-scale feature representations. These weights explicitly cap-
ture both global anatomical context and local boundary details. In the
second stage, a three-level cross-feature alignment mechanism is intro-
duced: the encoder of the reconstruction model is aligned with the de-
coder of the segmentation model, the decoder of the former is aligned
with the encoder of the latter, and the intermediate features of both
models are also aligned. This strategy ensures multi-level feature con-
sistency during downsampling, intermediate layers, and upsampling, ef-
fectively mitigating information loss in blurred regions. Extensive ex-
periments on the Synapse (abdominal CT) and ACDC (cardiac MRI)
datasets demonstrate significant improvements. Our code is available at
https://github.com/Li-gzhu/ReSeg-UNet.git.
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1 Introduction

Medical image segmentation is essential for modern computer-aided diagnosis
(CAD), providing pixel-level localization of anatomical structures and patholo-
gies [2, 25, 30]. Deep learning methods, like U-Net [23], drove significant advance-
ments in this field due to their powerful feature extraction ability. However, most
approaches are built with CNN, which may struggle to model long-range depen-
dencies because of their fixed receptive fields [22, 14]. This is a significant draw-
back in complex scenarios such as multi-organ CT segmentation or diffuse lesion
delineation in MRI, where global anatomical relationships are crucial for accu-
rate results. To address limitation, some researchers introduced Vision Trans-
formers (ViTs) [7] to the medical image segmentation task, using self-attention
mechanisms to capture global representation [10, 12]. For instance, TransUNet [5]
combines CNNs and ViTs for joint local-global feature learning in medical image
classification. While Transformers excel at modeling distant voxel interactions,
their quadratic computational complexity hinders deployment on high-resolution
3D medical volumes, particularly in resource-constrained clinical environments.

Recent advancements in state space models (SSMs) [9], such as Mamba [8],
leverage the core design principle of utilizing SSMs to capture global dependen-
cies while maintaining linear computational complexity [19, 17, 32, 29, 34], mak-
ing them highly effective for processing large-scale data. However, in the field
of medical image segmentation, where extremely high segmentation accuracy is
required, their ability to capture fine-grained local features remains somewhat
limited [28, 20]. Additionally, numerous studies [27, 26, 21, 33] have demonstrated
that the skip connections in U-shaped architectures merely concatenate features
from corresponding encoder and decoder layers, often introducing significant
feature redundancy, which subsequently adversely affects segmentation perfor-
mance.

In current medical image segmentation tasks, the inherent ambiguities in
low-contrast anatomical boundaries and imaging artifacts (e.g., metal artifacts
in CT or motion artifacts in MRI) often lead to inadequate capture of local
features by traditional methods, resulting in semantic information loss. In the
domain of natural image processing, existing studies have addressed this issue by
introducing cross-level knowledge transfer mechanisms (e.g., feature distillation
and spatial alignment) to mitigate semantic feature loss [4, 6, 16].

Inspired by advancements in natural image processing and the aforemen-
tioned limitations in medical image segmentation, we propose a two-stage opti-
mization framework for medical image segmentation, termed ReSeg-UNet. Specif-
ically, in the first stage, the framework performs an image reconstruction task
by inputting the ground truth into a traditional segmentation network, gener-
ating reconstruction weights that encapsulate rich semantic information. In the
second stage, the segmentation task leverages these stable weights from the first
stage and employs a three-level cross-feature alignment mechanism (see Fig. 1)
to guide and optimize the learning of local features in the segmentation model.
Through this approach, the segmentation model is able to learn finer-grained
semantic features while alleviating the issue of feature redundancy introduced
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by skip connections, thereby significantly improving segmentation performance.
Moreover, the additional computational overhead introduced by our proposed
optimization method in the segmentation task is minimal, as it is confined solely
to the calculation of the feature alignment loss. This results from our decoupled
training strategy, where the first and second stages are trained independently,
and the reconstruction weights in the second stage are kept frozen (i.e., no pa-
rameter updates are performed).
Contribution: 1) We innovatively propose a two-stage network framework that
leverages image reconstruction to optimize medical image segmentation. 2) We
design a composite reconstruction loss function to generate stable multi-scale fea-
ture weights, and furthermore, we propose a three-level cross-feature alignment
mechanism to optimize local feature learning for the segmentation task. 3)The
proposed method can be seamlessly integrated into existing U-shaped frame-
works (e.g., U-Net, TransUNet, Swin-UNet, VM-UNet) with minimal additional
cost, delivering performance gains effectively.

Fig. 1. Overview of ReSeg-UNet. (a) The ground truth is fed into a standard UNet
segmentation network to perform image reconstruction, thereby obtaining stable re-
construction weights. (b) By utilizing the frozen reconstruction weights and adopting
a three-level cross-feature alignment mechanism, the segmentation task is guided to
learn more refined local features.
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2 Method

2.1 Overview of ReSeg-UNet

ReSeg-UNet is a dual-stage optimization network tailored for medical image
segmentation, as shown in Fig. 1. Current mainstream models, based on CNNs,
Transformers, and Mamba, typically adopt a U-shaped structure comprising an
encoder, bottleneck layer, and decoder. In the first stage, a standard segmen-
tation network performs a reconstruction task using ground truth to generate
stable, semantically rich weights. In the second stage, these weights guide the
segmentation task through a three-level cross-feature alignment mechanism, en-
hancing local feature learning for robust and accurate segmentation. Below, we
detail the ReSeg-UNet framework.

2.2 Stage 1: Image Reconstruction

Fig. 1(a) illustrates the detailed architecture of the image reconstruction process.
First, while keeping the model architecture unchanged, we perform the image
reconstruction task by using the ground truth x̂ ∈ RH×W×C (where H, W , and
C denote the height, width, and number of channels of the image, respectively) as
input, thereby obtaining stable reconstruction weights. To this end, we designed
a composite loss function comprising the MSE loss and L1 regularization loss,
which are employed to evaluate the global structural consistency and local detail
restoration capabilities of the reconstructed image, respectively. The MSE loss
is employed to quantify the pixel-level differences between the reconstructed
image and the ground truth image, while the L1 loss is utilized to enhance the
local detail restoration capability of the reconstructed image, particularly in
preserving edge and texture features. The detailed formulas are as follows:

LMSE(x, x̂) =
1

H ×W × C

H∑
i=1

W∑
j=1

C∑
k=1

(xi,j,k − x̂i,j,k)
2 (1)

LL1(x, x̂) =
1

H ×W × C

H∑
i=1

W∑
j=1

C∑
k=1

|xi,j,k − x̂i,j,k| (2)

Where x represents the reconstructed predicted image and x̂ denotes the
ground truth image, the final reconstruction loss is formulated as the weighted
sum of the MSE loss and the L1 loss, as shown in the following equation:

LRecon(x, x̂) = α · LMSE(x, x̂) + β · LL1(x, x̂) (3)

Here, α and β are weighting coefficients used to balance the contributions of
the two loss terms, with α = 0.6 and β = 0.4.
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2.3 Stage 2: Segmentation Optimization

Fig. 1(b) illustrates the detailed architecture of the three-level cross-feature
alignment mechanism in the second stage. This stage leverages the image re-
construction weights trained in the first stage to guide the optimization of the
segmentation task. The core objective of the second stage is to achieve feature
alignment between the reconstruction task and the segmentation task, ensuring
that the segmentation network can fully reuse the anatomical features learned
in the first stage. Specifically, the three-level cross-feature alignment mechanism
consists of the following three levels: Feature alignment between the reconstruc-
tion encoder and the segmentation decoder (Recon-E → Seg-D): For each level
l, the alignment loss is defined as:

LRecon-E→Seg-D
Align (l) =

1

Hl ×Wl × Cl

∥∥F l
Recon-E − F l

Seg-D
∥∥2 (4)

Here, F l
Recon-E denotes the feature at the l-th layer of the reconstruction task

encoder, and F l
Seg-D represents the feature at the l-th layer of the segmentation

task decoder. Hl, Wl, and Cl denote the spatial dimensions and the number of
channels of the feature maps, respectively. The alignment loss between Recon-D
and Seg-E is defined as:

LRecon-D→Seg-E
Align (l) =

1

Hl ×Wl × Cl

∥∥F l
Recon-D − F l

Seg-E
∥∥2 (5)

Here, F l
Recon-D denotes the feature at the l-th layer of the reconstruction task

decoder, and F l
Seg-E represents the feature at the l-th layer of the segmentation

task encoder. For the bottleneck layer (intermediate features), the alignment loss
is defined as:

Lin
Align =

1

Hin ×Win × Cin
∥FRecon-in − FSeg-in∥2 (6)

Here, FRecon-in denotes the feature of the bottleneck layer in the reconstruc-
tion task, and FSeg-in represents the feature of the bottleneck layer in the segmen-
tation task. The total feature alignment loss is the average of the aforementioned
three-level alignment losses, formulated as:

LAlign =
1

3

(
3∑

l=1

(
LRecon-E→Seg-D
Align (l) + LRecon-D→Seg-E

Align (l)
)
+ Lin

Align

)
(7)

Optimization Objective Function: The total loss function combines LAlign

with the original segmentation loss function LSeg, which employs both cross-
entropy and Dice loss. The formula is as follows:

LTotal = LSeg + λ · LAlign (8)

Here, λ is the weighting coefficient for the feature alignment loss, which
controls the contribution of feature alignment to the segmentation task. The
value of λ is set to 0.035.
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Table 1. Comparison with SOTA methods on Synapse dataset. ∆ denotes the im-
provement gain (%) by comparing with the original method.

Model DSC(%)↑ HD↓ Aorta Gallbladder Kidney(L) Kidney(R) Liver Pancreas Spleen Stomach
U-Net [23](MICCAI’15) 76.85 39.70 89.07 69.72 77.77 68.60 93.43 53.98 86.67 75.58

U-Net++ [31] (MICCAI’18) 76.91 36.93 88.19 68.89 81.76 75.27 93.01 58.20 83.44 70.52
TransUNet [5](arxiv’21) 77.48 31.69 87.23 63.13 81.87 77.02 94.08 55.86 85.08 75.62

UCTransNet [27](AAAI’22) 78.23 26.75 84.25 64.65 82.35 77.65 94.36 58.18 84.74 79.66
Swin-UNet [3](ECCV’22) 79.13 21.55 85.47 66.53 83.28 79.61 94.29 56.58 90.66 76.60
HiFormer [12](WACV’23) 80.69 19.14 87.03 68.61 84.23 78.37 94.07 60.77 90.44 82.03
VM-UNet [24](arxiv’24) 81.08 19.21 86.40 69.41 86.16 82.76 94.17 58.80 89.51 81.40
H2Former [11](TMI’23) 82.16 18.79 87.03 69.78 86.38 83.49 94.71 64.49 90.69 80.73

MISSFormer [13](TMI’23) 81.96 18.20 87.71 63.86 87.97 82.80 94.68 60.90 90.60 82.27
Swin-UMamba [18] (MICCAI’24) 82.57 16.21 88.40 70.41 87.16 83.76 95.17 64.80 89.51 81.40

U-Net (our) 78.86 27.68 88.60 71.02 82.24 70.21 94.78 62.23 88.60 73.20
∆ +2.01 -12.02 -0.47 +1.30 +4.47 +1.61 +1.35 +8.25 +1.93 -2.38

TransUNet (our) 79.65 26.59 89.20 64.21 81.23 76.58 94.60 62.38 87.33 81.67
∆ +2.17 -5.10 +1.97 +1.08 -0.64 -0.44 +0.52 +6.52 +2.25 +6.05

Swin-UNet (our) 80.58 18.09 86.36 67.51 87.96 79.26 95.26 60.35 89.66 78.28
∆ +1.45 -3.46 +0.89 +0.98 +4.68 -0.35 +0.97 +3.77 -1.00 +1.68

VM-UNet (our) 83.22 15.73 89.62 71.21 88.02 81.36 95.76 63.36 90.61 85.82
∆ +2.14 -3.48 +3.22 +1.80 +1.86 -1.40 +1.59 +4.56 +1.10 +4.42

Table 2. Comparison of different methods in ACDC dataset.

Model DSC(%)↑ RV Myo LV
U-Net [23](MICCAI’15) 89.57 85.81 87.47 95.42
TransUNet [5](arxiv’21) 89.71 86.67 87.27 95.18
Swin-UNet [3](ECCV’22) 90.00 88.55 85.62 95.73
HiFormer [12](TMI’23) 90.82 88.55 88.44 94.47

MISSFormer [13](TMI’23) 91.19 89.85 88.38 95.34
VM-UNet [24](arxiv’24) 90.56 88.77 87.89 95.02

Swin-UMamba [18](MICCAI’24) 91.53 90.01 88.98 95.60
U-Net (our) 91.21 88.61 89.73 95.29

∆ +1.64 +2.80 +2.26 -0.13
TransUNet (our) 91.83 90.60 89.25 95.64

∆ +2.12 +3.93 +1.98 +0.54
Swin-UNet (our) 91.24 89.46 88.59 95.74

∆ +1.24 +0.91 +2.97 +0.01
VM-UNet (our) 91.85 90.30 89.58 95.67

∆ +1.29 +1.53 +1.69 +0.65

3 Experiments and Results

3.1 Dataset

Synapse Dataset [15]: The Synapse dataset comprises 30 scans of eight ab-
dominal organs: left and right kidneys, aorta, spleen, gallbladder, liver, stomach,
and pancreas. It contains 3,779 clinically enhanced abdominal CT images in axial
view. The dataset is divided into 18 samples for training and 12 for testing. We
report Dice Similarity Coefficient (DSC) and 95% Hausdorff Distance (HD95)
as evaluation metrics for this dataset.
ACDC Dataset [1]: The ACDC dataset contains 100 cardiac MRI scans ac-
quired from diverse clinical patients, with pixel-level annotations for three car-
diac substructures: left ventricle (LV), right ventricle (RV), and myocardium
(MYO). Following the standard experimental protocol of baseline models, the
dataset was partitioned into 70 cases (1,930 axial slices) for training, 10 cases
for validation, and 20 cases for testing. We evaluate our method using the DSC
as the evaluation metric.
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Fig. 2. Result visualization on Synapse dataset.

3.2 Experiment settings

We evaluated the effectiveness of our proposed loss function on U-Net [23], Tran-
sUNet [5], Swin-UNet [3], and VM-UNet [24] using both the Synapse and ACDC
datasets. The training configurations (i.e., batch size, optimizer, learning rate,
etc.) were kept consistent with those of the baseline models. For all experiments,
the input image size was set to 224× 224, and the data augmentation and pre-
processing steps were identical to those used in the baseline models. Training
was conducted on an Nvidia GTX 4090 GPU with 24GB of memory. In line
with the literature, TransUNet, Swin-UNet, and VM-UNet utilized pre-trained
weights from ImageNet, while U-Net was trained from scratch.

3.3 Results

The experimental results are presented in Table 1 for the Synapse dataset and
Table 2 for the ACDC dataset. From these results, it is evident that our proposed
optimization method for medical image segmentation baseline models is highly
effective, delivering significant performance improvements. Specifically, on the
Synapse dataset, U-Net, TransUNet, Swin-UNet, and VM-UNet achieved aver-
age Dice Similarity Coefficient (DSC) improvements of 2.01%, 2.17%, 1.45%,
and 2.14%, respectively. Moreover, the Hausdorff Distance (HD) was reduced
by 12.02mm, 5.10mm, 3.46mm, and 3.48mm, respectively. For the segmentation
accuracy of the eight organs, most organs showed significant improvements, es-
pecially the pancreas, where the four models achieved improvements of 8.25%,
6.25%, 3.77%, and 4.65%, respectively. On the ACDC dataset, the average DSC
improved by 1.64%, 2.02%, 1.24%, and 1.29%, respectively. Further compar-
isons reveal that the optimized VM-UNet outperformed Swin-UMamba on the
Synapse dataset, with an average DSC increase of 0.65% and an HD reduction of
0.48mm. On the ACDC dataset, the optimized VM-UNet also achieved a 0.32%
higher average DSC than Swin-UMamba.

The optimization effects are more evident in the segmentation visualizations.
In the Synapse dataset (see Fig.2), the optimized model achieves higher segmen-
tation accuracy than the baseline models, with outputs closer to the ground
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Fig. 3. Result visualization on ACDC dataset.

truth. In the ACDC dataset (see Fig.3), the baseline model performs poorly in
right ventricle segmentation, while the optimized model significantly improves
edge precision. This validates the effectiveness of our method in enhancing local
feature extraction for baseline models.

Fig. 4. Ablation study on the number of feature alignment loss functions and λ is
conducted based on the Synapse dataset.

3.4 Ablation studies

To further investigate our proposed method, we conducted a series of ablation
studies on four optimized baseline models using the Synapse dataset. The re-
sults and analysis are as follows: In the ablation experiments on different loss
functions (see Fig. 4(a)), the segmentation performance of the baseline models
significantly improved after incorporating the three-level cross-feature alignment,
achieving optimal performance when all three losses were utilized. In the abla-
tion experiment on the feature alignment balancing factor λ (see Fig. 4(b)), we
observed that the model reached its optimal performance when λ = 0.035. This
demonstrates that proper feature guidance can effectively enhance segmentation
performance.
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4 Conclusion

In this paper, we introduce ReSeg-UNet, a dual-stage optimization framework for
medical image segmentation that integrates image reconstruction with segmen-
tation. By incorporating a composite reconstruction loss and a three-level cross-
feature alignment mechanism, our approach effectively enhances the performance
of current mainstream 2D medical image segmentation models based on CNNs,
Transformers, and Mamba architectures. Specifically, it improves the segmen-
tation capabilities for low-contrast boundaries and small anatomical structures,
such as the pancreas. Extensive experiments on the Synapse (abdominal CT) and
ACDC (cardiac MRI) datasets demonstrate that ReSeg-UNet achieves signifi-
cant performance improvements over baseline models and outperforms existing
state-of-the-art methods. Future work will focus on extending this framework to
3D and multi-modal segmentation tasks.
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