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Abstract. Medical image segmentation typically relies on large, accu-
rately annotated datasets. However, acquiring pixel-level annotations is
a labor-intensive process that demands substantial effort from domain
experts, posing significant challenges in obtaining such annotations in
real-world clinical settings. To tackle this challenge, we present the SA-
Net framework, which leverages cross-supervision from segment anything
models (SAM) and 2D segmentation networks to learn from sparse anno-
tations. Specifically, we design an interactive graph learning segmenta-
tion network, which employs a bilateral graph convolution (BGC) module
to capture more detailed features from multiple perspectives, facilitating
the generation of high-quality pseudo-labels, which can serve as direct
supervision for semantic segmentation networks and SAM, enabling the
synthesis of additional annotations to enhance the training process. The
multi-scale attention (MSA) module facilitates cross-layer interaction by
partitioning channel label groups and capturing global information across
layers, while the recovery module (RM) utilizes deep features and low-
level features to fuse global context information and reconstruct lesion
boundary regions. Our experimental results on LUNA16, AbdomenCT-
1K, and self-collected datasets demonstrate the effectiveness of SA-Net.
Our code is available at https://github.com/CTSegPilot/SA-Net.git.

Keywords: Sparse annotation - Segment anything model - Multi-scale
attention module - Bilateral graph convolutional module.

1 Introduction

Accurate and robust medical image segmentation is crucial for ensuring reliable
clinical diagnosis, as segmenting organs or lesions provides valuable diagnostic in-
formation for healthcare professionals [19, 11]. With the progress of deep learning
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methods, high-performance automatic segmentation algorithms have emerged.
Fully convolutional networks [10, 3, 25] and encoder-decoder architectures, such
as Swin-SMT [16], CTN [14], HENet [26], EoFormer [20], and ConvUNET |[23],
are widely adopted for pixel-level or voxel-level segmentation across various med-
ical imaging tasks. A key enabler of these advancements is the availability of
high-quality, fully labelled training datasets [27,22]. However, obtaining anno-
tations for medical images is costly and time-consuming, particularly for 3D
volumetric data, requiring specialized expertise to delineate each case.
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Fig. 1. Overview of the SA-Net architecture for medical image segmentation. SA-Net
uses a SAM for preliminary segmentation, a 2D network to predict lesions, and finally, a
2D and SAM network to supervise the segmentation. J; and Js represent the enhanced
feature maps of boundaries and regions. ¢ is the threshold that divides the SAM’s
predictions. The operation ® denotes the resizing operation.
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The high cost and limited availability of labelled data have emphasized the
importance of research in incompletely supervised learning. To enable precise
segmentation of medical images with minimal annotations, various strategies,
including semi-supervised, self-supervised, weakly supervised, and unsupervised
learning, have been explored [15, 7,4, 2]. Ren et al. [17] introduced a weakly- and
semi-supervised method for lesion segmentation, which trains the model using
weakly annotated images along with unlabeled ones, thereby reducing depen-
dence on fully annotated data. However, the boundaries between lesions and
surrounding tissues are often unclear, and annotation methods typically fail to
provide precise object boundary information, leading to a significant perfor-
mance gap compared to fully supervised approaches. Sparse annotations, which
involve labelling only a few slices of each computed tomography (CT) image,
have been shown to preserve accurate boundaries for different categories [5]. To
increase slice differences, many existing methods generate pseudo labels through
image registration. Cai et al. [1] proposed a co-training framework that combines
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dense pseudo labels with sparse orthogonal annotations. However, this method
relies on the quality of the registration, and performance can degrade signifi-
cantly when registration fails, such as in the case of small or complex objects.

Transfer learning has become a powerful approach to overcome the challenge
of scarce annotated data. This approach utilizes pre-trained models, which have
been trained on large, fully annotated datasets, to improve performance on tar-
get datasets with fewer annotations. Recently, large language and vision models
have demonstrated the potential of modern transformer architectures by train-
ing on large, previously unseen datasets (8,9, 21|. Notably, the segment anything
model (SAM) [8, 24] has exhibited exceptional segmentation capabilities in image
processing, inspiring its application in this study. We employ SAM [24] to pre-
dict ground truth (GT) for CT image slices where annotations are unavailable,
leveraging its performance without the need for additional training.

This study introduces a novel, sparsely annotated cross-SAM network, SA-
Net, to tackle challenges in medical image segmentation. First, we propose a
bilateral graph convolution (BGC) module that captures the inter-task rela-
tionship by applying dual constraints between semantics and boundary features
through graph interactions. Secondly, the multi-scale attention (MSA) module
enables cross-layer interaction by partitioning channel and spatial label groups
to capture global information across layers. Lastly, the recovery module (RM)
combines deep and low-level features to reconstruct lesion boundaries, enhancing
segmentation performance. The key contributions of our work are as follows:

— The BGC module extracts features from semantic segmentation and bound-
ary detection tasks through graph interactions, allowing the network to learn
improved semantic and geometric relationships from both labelled and un-
labeled data.

— The MSA module enhances local cross-layer interactions across channels and
spatial dimensions while capturing global context within each channel and
spatial token group.

2 Method

2.1 Cross-SAM of Sparse Annotation

To enhance slice diversity and cope with the problem of limited supervision sig-
nals and sparse annotations that make direct training difficult, we learn from two
different slices and utilize SAM and two 2D networks to generate pseudo-labels
for each other. Specifically, the 3D network directly uses each sample as input.
Subsequently, the data were sliced in two directions, generating transverse and
coronal plane slices, which were employed to train the 2D segmentation networks.
The 2D network uses the MSA module to divide the channels and spatial label
groups to realize the cross-layer interaction of the ResNet-50 [6] encoder features
to perceive cross-layer global information. It then feeds the fused features into
the BGC module to impose dual constraints between semantics and boundaries
while globally capturing both intra-task and inter-task relationships. Finally,
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the deep features and low-level features are integrated by RM to reconstruct the
lesion boundary area and enhance the ability to capture lesion boundary fea-
tures. To enhance the supervision signal for each training sample, the selected
pseudo labels are combined with the sparse GT annotations for guidance. The
2D network learns the foreground and background on different slices and gener-
ates pseudo labels for the 3D network by making consistent predictions on the
same input sample. It is expressed as follows:
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where MIX (-) is a function that substitutes the labels in P of voxels with GT
annotations with labels in G of size (H x W x D). [](-) denotes the indicator
function, and p; represents the one-hot prediction for voxel 7. y; represents the
label corresponding to voxel i in G.

Due to the limitations of the supervision signal, SAM’s predictions often con-
tain noisy labels. Directly using these as pseudo labels for 2D networks may lead
to performance degradation. To address this, a confidence threshold is intro-
duced to identify voxels with a higher likelihood of being accurate. However, the
true accuracy R,.. of the predictions remains unknown, as dense annotations
are unavailable during training. Since R,.. and pseudo accuracy P,.. are related
to the training samples, estimating R,.. using P,.. is reasonable.

2.2 Bilateral Graph Convolutional Module

In image segmentation, geometric information and the correspondence between
semantics and geometry are often overlooked, leading to inconsistent segmen-
tation results, particularly for lesions with blurred boundaries. The BGC mod-
ule leverages bilateral graph convolution to reinforce dual constraints between
semantics and boundaries, thereby enabling the global exploration of task rela-
tionships. To project and reproject the semantic-aware graph g, and boundary-
aware graph g, we employ graph convolution to propagate information across
the graphs. The augmented form of the bilateral graph was defined as follows:

T T
= [ (e 00))] = [ 07 @
where H and W represent the augmented form of the bilateral node features and
weight matrices. W* and W? are two trainable weight matrices that adjust the
node dimensions of H* and H?, respectively.
The intra-graph reasoning captures the long-range dependencies within each
graph. In this study, the adjacency matrix A is composed of the intra-graph
matrix (A7) and the inter-graph matrix (A™"), and is expressed as:

ntra inter -AS_)S 0 Ab%s 0
A=A ! +A ¢ :< 0 Abab)""_( 0 Asab) (3)

where A37Y = {ai;” b1 represents the correlation weights from the j-th node of
g° to the i-th node of g°, with s and b denoting semantic and boundary features,
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respectively. The coefficients a;; indicate the importance of node j for node .
It is worth emphasizing that the graph constructed here is directional, as the
weight vector W differs when learning a;; and a;;. A single graph convolution
layer is defined using the normalized adjacency matrix A, augmented bilateral
node features H, and the weight matrix WV as follows:

H=FH|a(AHW))),HRW = [(HSWS)T 7 (wab)T}T "

where F (-) combines the original and updated features. The enhanced graph
representation is obtained by reprojection to the original coordinate space, and
J3 is derived via feature interaction using ESG-Conv [25]. || is the concatenation.

2.3 Attention and Recovery Module

To mitigate the semantic gap and prevent information loss that can arise from
element-wise summation and layer-by-layer transmission, Fig. 2 utilizes MSA to
capture cross-layer global information, enabling feature interaction across layers.
The encoded features E; are oscillated at different frequencies through MFCA to
generate feature maps F; to enrich channel information and help the model cap-
ture subtle differences in irregular lesion features [13]. CCA facilitates multi-scale
interactions across layers in the channel dimension, providing global contextual
details across the spatial dimension for each token along the channel. To build
the interactive input, CR is first applied to the feature map of each scale to
ensure consistent spatial resolution, resulting in F;. Next, we apply OCP to
form channel-wise token groups. Using the feature map from the i-th layer, after
acquiring F, cross-layer consistent multi-head attention is employed to capture
global dependencies along the spatial dimension, producing the interaction out-
put Y;. The multi-head mechanism is employed to model global dependencies
for each token along the channel dimension.
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Fig. 2. Overview of MSA module. CCA and CSA promote local cross-layer interactions
along the channel and spatial dimensions. FC is a fully connected operation.
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After acquiring the interaction outputs Y for the feature maps at each scale,
ROCP was applied to derive Y;—¢. Subsequently, SR is used to generate the final
result Y;, which matches the shape of the input F;. Similarly, the cross-layer
spatial-wise attention (CSA) enables multi-scale interactions between neighbor-
ing regions across layers along the spatial dimension, providing global contextual
information X; along the channel dimension for each spatial-wise token. We then
employ a cross-layer consistent multi-head attention mechanism to capture the
global dependencies X; in the spatial dimension and apply ROSP to obtain
the interaction result X;. To effectively capture multi-scale information, we uti-
lize four parallel convolutional layers with varying convolution rates to obtain
multi-scale features O;, addressing the issue that a single-scale feature may not
adequately cover the diverse sizes and locations of lesions.
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Fig. 3. Example of segmentation results from a self-collected nodule dataset.

The structure of the boundary-aware attention (BAA) module is shown in
Fig. 1 (c). Before being fed into the BAA module, the features E; are resized
to the corresponding resolution E; to provide the boundary GT B,; and the
internal lesion region GT L;. We first perform element-wise product of E; with
B and Lj to extract the features corresponding to the boundary and interior
lesion regions, denoted as M; and M., respectively. M; is used as the query
(Q) matrix, and M; as the key (K) and value (V) matrices to compute the
interaction feature to extract the characteristics of the internal lesion area more
accurately. To enable SA-Net to capture richer global features, we shuffle Fs and
F., then combine them element-wise to obtain the output fused features Lllz_l.

SA-Net performs reasoning at low resolution and the direct interpolation of
the final estimate results in performance degradation. To overcome this chal-
lenge, we propose the RM, which leverages both boundary and region features
containing deep semantic information and shallow structural details to progres-
sively refine the lesion area feature (LAF) estimation, as illustrated in Fig. 1(b).
This approach enhances LAF prediction by jointly guiding it with the lesion
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boundary characteristics (LBC) map B;, the LAC map L.
i—112 i i—1
(L'} s = fBaa (Ei,BmLi) Lioi =L + L; (5)

where fpaa (]:Di,Bi7Li) is formulated to capture contextual information from

the side-output feature Li_l, guided jointly by the LAC and LBC maps.
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Fig. 4. Bubble chart showing the statistical analysis results of each network.

3 Experiments

Datasets and Preprocessing: We evaluate SA-Net using three different datasets:
LUNA16 [18], AbdomenCT-1K [12], and self-collected CT image dataset. The
self-collected CT images dataset contains 1299 pulmonary nodule samples. Af-
ter the preprocessing stage of the CT images, the grayscale images are used to
determine the approximate location and size of the nodules. Subsequently, this
information is used to select the region of interest (ROI) to include the surround-
ing area of the nodule. The ROI sizes for the self-collected CT images and the
LUNA16 dataset are 160 x 160 x 48 and 32 x 64 x 64, respectively. We divide
the CT images in AbdomenCT-1K into 96 x 96 x 96 patches as the input volume
and only one-third of the slices are annotated for each case.

Comparative Results Analysis: To demonstrate the proposed SA-Net’s
effectiveness, we experimentally compare it with other competing segmentation
models on three segmentation datasets. The quantitative comparison results are
shown in Tables 1 and 2. It can be observed that the collaborative learning
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Table 1. Segmentation performance evaluation on three different datasets.

Method Self-collected LUNA16 AbdomenCT-1K
Dice (%) BF (%) Dice (%) BF (%) Dice (%) BF (%)
EoFormer|20] 67.6+2.7 70.44+2.9 68.7+2.9 71.6+3.3 83.3+3.9 81.5+5.9
ConvUNET][23] 68.9+2.6 71.3£2.2 70.842.9 74.24+2.7 86.8+£3.7 87.6+£3.9
CTN[14] 70.7£3.8 73.3+£3.5 68.8+1.7 70.3+3.9 87.842.2 85.7£6.9
HENet[26] 73.1+£2.2 75.4+2.0 70.7£4.3 68.9+6.6 87.6+2.1 88.1+2.2
Swin-SMT|[16] 74.7£2.4 76.8+£2.2 71.64+3.2 71.045.2 88.6+£2.6 88.5+2.6
Cross-teaching [2] 76.1+2.0 78.5+1.7 74.3+2.5 76.0£4.1 90.6+1.7 91.3£1.7
Ours 78.8+2.2 80.9+2.1 76.0+1.5 78.7+1.4 93.0+1.4 92.7+1.2

Table 2. The ablation experiments of the SA-Net on the nodule datasets. The baseline
consists of SAM and two 2D segmentation networks with ResNet-50 as the encoder.

Method Self-collected LUNA16
SAM Baseline MSA BGC RM Dice (%) BF (%) Dice (%) BF (%)

Al vV 72.5+1.4 74.8£1.3 71.2£1.7 74.6£1.6
A2 v v 74.7£2.3 T77.1£2.4 71.9+2.4 75.2+£2.5
A3 Vv v v 76.0£1.6 78.4£1.5 73.3+£2.3 76.3+2.1
Ad v v v v 76.9£1.3 79.0£1.2 74.8£2.0 77.5£1.3
A5 Vv v v v v 78.842.2 80.9+2.1 76.0+1.5 78.7+1.4

framework SA-Net can dynamically adjust SAM to provide more accurate pseudo
labels as an additional supervisory signal, even in lesion areas with low contrast
or blur. We analyze the Dice coefficient (Dice), Boundary F1 (BF), Jaccard Index
(JI), and P-value of SA-Net and other models. Fig. 3 shows the 3D surface
distance between the predicted and GT results. As the green area grows, the
segmentation improves. These improvements are attributed to the fact that SA-
Net is able to promote local cross-layer interactions along the channel and spatial
dimensions through the MSA module, thereby building a global receptive field
along the spatial and channel dimensions and utilizing different convolution rates
to capture features of different scales, so that SA-Net can accurately decode
complex and ambiguous areas.

Ablation Study: To assess the performance of the proposed SA-Net archi-
tecture, we conducted ablation studies on the pulmonary nodule dataset. Fig. 4
presents a bubble chart obtained by performing a statistical significance analysis
on the JI value of each compared network on the dataset. We can see that the
MSA module enhances the SA-Net’s ability to leverage global contextual infor-
mation and facilitate cross-layer, multi-scale feature integration. Combining the
encoder features of the 2D network enables it to better solve the problems of
irregular shapes and blurred boundaries of lesions. The BGC module extracts
features from both semantic segmentation and boundary detection tasks through
graph interactions, allowing the network to establish more robust semantic and
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geometric relationships from both labelled and unlabeled data. RM utilized the
characteristics of deep features that are good at capturing and transmitting
semantic information. In contrast, low-level features are good at representing
complex geometric details to reconstruct the lesion boundary area gradually.

4 Conclusion

We propose a novel SA-Net segmentation framework to address the limitations
of existing sparsely annotated methods for medical image segmentation. The
framework effectively utilizes SAM to provide pseudo labels as additional super-
visory signals to improve segmentation performance. Extensive experiments on
segmentation datasets demonstrate the effectiveness of our approach. Further
directions will explore unsupervised learning to reduce reliance on large labelled
datasets, making models more practical in data-scarce environments.
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