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Abstract. With the emergence of large-scale vision language models
(VLM), it is now possible to produce realistic-looking radiology reports
for chest X-ray images. However, their clinical translation has been ham-
pered by the factual errors and hallucinations in the produced descrip-
tions during inference. In this paper, we present a novel phrase-grounded
fact-checking model (FC model) that detects errors in findings and their
indicated locations in automatically generated chest radiology reports.
Specifically, we simulate the errors in reports through a large synthetic
dataset derived by perturbing findings and their locations in ground
truth reports to form real and fake findings-location pairs with images.
A new multi-label cross-modal contrastive regression network is then
trained on this dataset. We present results demonstrating the robustness
of our method in terms of accuracy of finding veracity prediction and
localization on multiple X-ray datasets. We also show its effectiveness
for error detection in reports of SOTA report generators on multiple
datasets achieving a concordance correlation coefficient of 0.997 with
ground truth-based verification, thus pointing to its utility during clini-
cal inference in radiology workflows.

Keywords: Fact-checking · report generation · vision language models.

1 Introduction

Preliminary radiology reports generated by automated report generation models
are valuable in emergency room settings, where radiologists may not be imme-
diately available and rapid interpretation is required[22]. Current methods of
report generation are predominantly based on vision language models (VLM)[1,
14, 4, 19, 18] which still suffer from hallucinations and factual errors that limit
their clinical applicability[3]. Strategies to correct such models exist such as
direct policy optimization (DPO)[17, 5, 15, 33] or proximal policy optimization
(PPO)[32] with reward models[34] directly tap into the generative decoder pa-
rameters to compute hallucination risk scores [5]. However, they are applicable



2 R. Mahmood et al.

Fig. 1. Illustration of workflow for FC model training (red lines), inference (green
lines), and error detection and explanation (orange lines) using common modules.

during training or fine-tuning stages. Methods of fact-checking at inference time
exist but they often consult external knowledge [15, 8, 20] to spot the factual er-
rors which are unsuitable for radiology reports as the report needs to be specific
to the patient-image. Similarly, methods that use generic large language models
(LLMs) as judges to verify the radiology report text [1, 18, 31] are not suitable
either, since they themselves have hallucinations, and may not corroborate their
deductions with the patient-specific image.

Thus, there is a need to develop an independent fact-checking method for
the clinical inference phase to bootstrap radiology report generation. Realizing
this, we had earlier attempted to build a simple fact-checking model using a pre-
trained vision-language model (CLIP) and a binary SVM to classify sentences as
real or fake in automated reports[10]. However, being based on full sentences, it
was sensitive to writing styles in reports. Further, it used a frozen encoder and
did not offer any explanation of the errors nor perform a phrasal grounding of
the findings in images.

In this paper, we introduce an innovative method of fact-checking chest X-ray
radiology reports during clinical inference with the following novel contributions.
First, we derive a large synthetic dataset of over 27 million images paired with
real and fake findings to simulate errors in reports through perturbation of their
identities and location descriptions in ground truth reports. This dataset is now
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being contributed to open source. We also develop a new multi-label contrastive
regression model for fact-checking (FC model) that is trained to discriminate and
anatomically ground the real and fake findings. Through extensive testing, we
show that the FC model can detect radiology report errors with a concordance
correlation coefficient of 0.997 with ground truth-based verification making it a
potential surrogate for ground truth during clinical inference.

2 Method

Our overall approach to factual error detection in automated radiology reports
consists of training a fact-checking model (Figure 1a), using it in inference mode
on automated reports to record predicted findings and their locations (Fig-
ure 1b), and recording the deviations of implied findings from automated re-
ports from predictions as shown in Figure 1c. As can be seen from Figure 1,
the workflows use common pre-processing modules of sentence extraction, find-
ing extraction and anatomy localization, but are fed different image-text pairs
during training and inference. Specifically, the training workflow depicted in Fig-
ure 1a involves: (i) finding localization, (ii) synthetic data generation and (iii) FC
model training. Step (i) extracts anatomical locations (L) from ground truth im-
ages (I), findings (F) from their reports, and collates to generate bounding boxes
< x, y, w, h > for findings. In step (ii) synthetic perturbations are applied to gen-
erate real/fake pairs < F, I, x, y, w, h,E > where E is the veracity label. In step
(iii) the FC model is trained using < F, I > as input and < x, y, w, h,E > as out-
put. During inference, the FC model is given findings extracted from automated
reports and their image as input, to predict the output < xp, yp, wp, hp, Ep >
where < xp, yp, wp, hp > is the bounding box and Ep is the predicted real/fake
label as shown in Figure 1b. Finally, the error detection and quantification work-
flow shown in Figure 1c recovers the indicated location from automated report
and compares it to the predicted finding and location using an error measure
that results in a visual explanation.
2.1 Training dataset generation
For training data generation, we use prior work on finding extraction[22] and
anatomical region detection [27, 21] as pre-processing. To make our fact-checking
approach agnostic to sentence writing styles, we abstract the described findings
in sentences into a simplified structured form called FFL (fine-grained finding
labels) using the method described in [22] and as illustrated in Table 1. Each
finding is normalized to a standard vocabulary (e.g., pulmonary vasculature en-
gorged -> vascular congestion) using a comprehensive clinician-curated chest
X-ray lexicon of 101,088 distinct FFL [27, 21] which are sufficient to capture
the variety seen in automatically generated reports. The FFL extraction algo-
rithm reported in [22] had a 97% accuracy and was seen as sufficient for our
pre-processing. In addition to finding descriptions, we also use the anatomical
location algorithm described in [28, 29] to locate bounding boxes in any frontal
chest X-ray image for 36 anatomical regions cataloged in the chest X-ray lexicon
[27, 21]. Its accuracy was previously assessed at 0.896 precision and 0.881 recall,
and was used to generate the Chest ImaGenome benchmark dataset[29].
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Table 1. Illustration of FFL.

Sentence Simplified FFL
Pleural vasculature is not engorged anatomicalfinding | no | vascular congestion | lung
and the patient has moderate anatomicalfinding | yes | pumonary edema|right lung
pulmonary edema on the right

Table 2. Illustration of synthetic perturbations to produce the training dataset for the
FC model. Only the core finding in column 2 for simplicity.
’E’ : (0=non-existent finding, 1=existing finding)

Synthetic Perturbation Generated Finding Label (<xy,w,h,E>)
Original yes|edema < 0.14, 0.13, 0.72, 0.56, 1 >
Reversal no|edema < 0, 0, 0, 0, 0 >
Relocate yes|edema < 0.85, 0.74, 0.10, 0.21, 0 >
Relocate yes|edema < 0.90, 0.70, 0.10, 0.20, 0 >
Substitution yes|lung cyst < 0.02, 0.48, 0.10, 0.14, 0 >

Let < I,R > be the sample set of ground truth image-report pairs in a
gold dataset D. Let F = {Fj} be the total list of possible findings in chest
X-ray datasets. The set of real Finding-location (FL) pairs extracted by the
pre-processing per sample Di =< Ii, Ri >∈ D can be denoted by FLiReal =
{flij} = {< fij , lij >} where:

fij =< Tij |Nij |Cij >, lij =< xij , yij , wij , hij > . (1)

Here fij ∈ FiReal is the jth real finding in report Ri and lij is the bounding box
for the finding fij in image Ii starting at (xij , yij) of width wij and height hij

in normalized coordinates ranging from 0 to 1.
Let Lj = {lij} be the list of all normalized locations accumulated across all

images of D for a finding Fj . With normalized coordinates, and since we pick
among the valid finding locations, any synthetic location generated for Fj will
be valid for some image in the dataset.

The errors found in generated reports are known to include false predictions,
incorrect finding locations, omissions, or incorrect severity assessments[30]. We
focus on the first two errors so that given a real finding fij at location lij for a
sample Di, we create 3 variants to reflect (a) reversal of polarity (b) relocation
of the finding (c) and substitution with appropriate relocation as FLiFake = {<
flij , f lik, f lmn >}, where flij is the reversed finding, flik is finding fij relocated
to a random new position lk ∈ Lj , and flmj is obtained by randomly substituting
finding fj with fm ̸∈ Fi at location ln ∈ Lm taking care to avoid repeats and
contradictions. Table 2 shows synthetic perturbations created from an original
finding "yes|edema" based on the operations above.

2.2 Building the FC model
The end-to-end architecture of the FC model is illustrated in Figure 2. We use
the encodings of images and FFL text to learn a joint embedding space that is
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designed to separate the real FFL labels from fake labels using supervised con-
trastive learning[7]. The embeddings from real and fake text-image pairs are then
concatenated to learn an inner regression network to predict both the location
and veracity of the finding.

Let zi be the vision projection encoder output, and let zfij be the text encod-
ings of findings for each sample Di = (Ii, Fi) where fij ∈ Fi = FiReal ∪ FiFake

are the real and fake labels per sample. We define a multi-label cross-modal
supervised contrastive loss per sample as:

LSupCi
=

−1

|FiReal|
∑

fij∈FiReal

log
esifij/τ∑

aik∈FiFake
esiaik

/τ
(2)

where sifij = zi · zfij is the pairwise cosine similarity between image and textual
embedding vectors from the real findings fij ∈ FiReal, and siaik

= zi ·zaik
is with

the fake findings where aik ∈ FiFake. The overall loss is obtained by averaging
across all the samples in the batch. Here τ is the temperature parameter. This
formulation results in a non-diagonal similarity matrix as shown in Figure 2 and
differs significantly from existing VLM contrastive encoders based on CLIP who
all assume a diagonal similarity matrix[16, 10, 18] and are self-supervised. It also
differs from supervised contrastive learning which was previously unimodal and
used for image classification from augmented version of images treated as positive
samples[7]. To our knowledge, the supervised contrastive learning formulation has
not been used to develop vision-language encoders with real and fake labels.

Next, the inner regression network takes the projected joint embeddings
TijReal = [zi|zfij ] of image Ii paired with real finding label fij ∈ FiReal or
fake labels TijFake = [zi|zaik

] where aik ∈ FiFake and the corresponding super-
vision label Yg =< Y1g, Y2g > where Y1g =< x, y, w, h > and Y2g = E = 1 for
the real finding and 0 otherwise. Using Yp =< Y1p, Y2p > as the prediction from
the network, we can express the regression loss per sample as

LRegi = |Y1p − Y1g|︸ ︷︷ ︸
L1(Y1p,Y1g)

+
|Y1p ∩ Y1g|
|Y1p ∪ Y1g|

−
|CY1p,Y1g

\Y1p ∩ Y1g|
|CY1p,Y1g |︸ ︷︷ ︸

Lgiou(Y1p,Y1g)

+ |Y1p − Y1g|2︸ ︷︷ ︸
Lmse(Y1p,Y1g)

− [Y2glog(Y2p) + (1− Y2g)log(1− Y2p)]︸ ︷︷ ︸
LBCE(Y2p,Y2g)

(3)

where CY1p,Y1g is the convex hull of the bounding boxes defined by Y1p and Y1g.
The loss function reflects the dual attributes being optimized, namely, the lo-

cation and the veracity of the finding. The L1 loss and generalized IOU loss have
previously been used for regression[2]. However, since in our case, the negative
findings have bounding box coordinates as < 0, 0, 0, 0 > which poses a problem
for generalized IOU when the prediction error is small. For this reason, and to
ensure smooth convergence, we added the mean square penalty. Finally, for the
veracity indicator variable E, we use the binary cross entropy loss.
Implementation details: We used a chest X-ray pre-trained CLIP encoder
(151,277,313 parameters) [18] and retained its image encoder (ViT-B/32) and
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Fig. 2. Illustration of the architecture of our FC model. The real FFL are taken as
positive and the fake FFL as negative in the contrastive formulation.

Table 3. Details of datasets used in experiments. Here CImagenomeS stands for Chest
ImagGenome silver dataset.

Dataset Patients Images Findings Regions Real/Synth.
Train/Val/Test

CImagenomeS[29] 44,133/6274/12,538 243,311 49 922,295 1.616M/27.047M
CImaGenomeG[29] 288/33/69 461 35 5,477 4,063/23,463
MS-CXR[6] 478/54/114 925 8 2,254 2,247/24,338
ChestXray8[25] 457/51/109 880 8 1,571 1,571/10,137
VinDr-CXR[12] 9,450/1,050/2,250 15,000 23 69,052 47,973/132,632

text encoder (masked self-attention Transformer). The joint embedding projec-
tion layers of CLIP (768x512 for image and 512x512 for text) were, however,
fresh-trained using the new supervised contrastive formulation derived from real-
fake labels. The regression network (657,413 parameters) consisted two linear
layers, two drop out layers with RELU for intermediate layers and separate
sigmoidal functions for producing the output regression vectors as shown in
Figure 2. To train this network in an end-to-end fashion, the losses defined in
Equations 2 and 3 were applied at the respective heads shown in Figure 2.
The FC model was trained for 100 epochs using the AdamW optimizer on an
NVIDIA A100 GPU with 40GB of memory and a batch size of 32. The cosine
annealing learning rate scheduler was used with the maximum learning rate of
1e-5 and 50 steps for warm up.

2.3 Error detection using the FC model
The FFL extracted from an automated report and the image are used by the FC
model to predict the veracity of the finding label and its location as shown in
Figure 1b. To quantify the error, we use a phrase-grounded error measure called
the FC score[11] which was shown to outperform other evaluation measures such
as Radgraph F1, SBERT, and BLEU score. Specifically, we calculate the error
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Table 4. This table illustrates multiple aspects of the FC model evaluation. The FC
model performance under different ablation architecture configurations across multi-
ple datasets are rows in the first 4 rows. The last two rows show comparison of our
FC model’s phrasal grounding and real/fake classification performance against SOTA
methods.

Method CImaGenomeG MS-CXR ChestX-ray8 VinDR-CXR
Accuracy MIOU Accuracy MIOU Accuracy MIOU Accuracy MIOU

FCRegComb. 0.92 0.54 0.94 0.53 0.92 0.57 0.90 0.49
FCRegBCE 0.88 0.49 0.92 0.46 0.90 0.53 0.88 0.45
FCRegDual 0.87 0.51 0.89 0.49 0.87 0.51 0.86 0.47
FCRegSep 0.89 0.38 0.89 0.39 0.92 0.42 0.89 0.37

Med-RPG[2] - 0.23 - 0.32 - 0.28 - 0.38
Maira-2[1] - 0.39 - 0.48 - 0.51 - 0.42

R/F Model[10] 0.84 - 0.78 - 0.81 - 0.83 -

Fig. 3. Illustration of error detection and localization for 5 sentences from reports
generated by X-rayGPT[24]. The legend for bounding boxes: predicted finding location:
Green, indicated finding: orange, ground truth finding: red.

detected by FC model as RQ(A,P ) = 1− FCScore(A,P) as :

RQ(A,P ) == 1− 1

2
(

|Epj = 1|∑
Epj∈Ep

Epj
+

1

|Lp|
∑
j

|LAj ∩ Lpj |
2|LAj ∪ Lpj |

) (4)

Here Epj is a predicted veracity for an indicated label FAj ∈ FA in the automated
report, and LAj , Lpj are the indicated locations from automated reports and
the predicted locations from the FC model respectively computed as shown in
Figure 1c.

3 Results
We conducted several experiments using chest X-ray datasets with location and
finding annotations shown in Table 3. Of these, Chest ImaGenome gold (CIm-
agenomeG)[29] dataset was set aside for error detection evaluation as it had a
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Table 5. Illustrating the effectiveness of the FC model in assessing errors in generated
reports. High concordance can be seen between error detection using ground truth
(A,G) and error detection using FC model (A,P) in all cases.

Report Generator CImaGenomeG MS-CXR ChestX-ray8 VinDR-CXR
RQ RQ RQ RQ

(A,P) (A,G) (A,P) (A,G) (A,P) (A,G) (A,P) (A,G)
RGRG[23] 0.541 0.537 0.329 0.308 0.305 0.298 0.549 0.537

XrayGPT[24] 0.622 0.626 0.388 0.391 0.377 0.355 0.618 0.609
GPT4-inhouse 0.658 0.653 0.433 0.426 0.399 0.408 0.636 0.630
R2GenGPT[26] 0.587 0.585 0.377 0.374 0.346 0.333 0.581 0.579

CV2DistillGPT2[13] 0.576 0.573 0.439 0.433 0.427 0.420 0.588 0.6
CheXRepair[18] 0.744 0.733 0.466 0.461 0.439 0.432 0.709 0.714

Maira-2[1] 0.619 0.633 0.423 0.425 0.412 0.419 0.578 0.569

complete set of ground truth reports, clinician-verified findings and their loca-
tions[29]. The training partitions of the rest of the datasets were used for the
generation of the synthetic dataset yielding over 27 million samples as shown in
Table 3.
Automated report generators evaluated: We selected several SOTA report
generators whose code was freely available as shown in Table 5. All report gener-
ators were given the same prompt, and automated reports collected for the 439
images of the (CImagenomeG) were retained for error analysis.
Real/Fake classification performance: We evaluated the accuracy of FC
model’s in FFL veracity prediction using the test partitions of the datasets
shown in Table 3. The model consistently yielded an accuracy over 90% for
real/fake classification, as shown in Table 4. By using 10 fold cross-validation in
the generation of the (70-10-20) splits for the datasets, the average accuracy of
the test sets lay in the range 0.92 ± 0.12.
Anatomical grounding performance: Figure 3 illustrates sample explain-
able error detection by the FC model on XrayGPT-generated reports[24]). By
comparing the bounding box locations and predicted labels to ground truth
FFLs, we observed that the FC model correctly flags errors and localizes find-
ings with greater overlap with ground truth. In fact, the mean IOU with the
ground truth bounding boxes ranged from 0.49-0.57 as shown in Table 4 (rows
1-4), across various model architectures.
Comparison to related methods: With no prior work on fact-checking with
phrasal grounding for chest X-ray reports, we compared to the nearest methods
that either do phrasal grounding (MED-RPG[2],Maira-2[1]) or real/fake classi-
fication (the R/F Model from [10]). The results are shown in Table 4 in the last
three rows recording the relevant numbers for a regressor or classifier respec-
tively. In comparison to pure phrase grounding or real/fake classification only,
our method predicts both veracity and location of findings, and outperforms
these methods across all the datasets.
Ablation studies: We conducted ablation studies using 4 different architec-
tures, namely, (a) end-to-end training as shown in Figure 2 (FCRegComb), (b)
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replacing supervised contrastive loss with BCE loss (FCRegBCE), (c) using a
generic pre-built CLIP encoder with regressor (FCRegSep), and (d) using a
dual head regressor with separate loss functions for regression and classifica-
tion (FCRegDual). The results of real/fake classification and phrasal grounding
shown in Table 4 indicate that combining the contrastive encoder with the re-
gressor in an end-to-end fashion gave the best performance.
Fact-checking report performance: Fact-checking involves computing the
error between the indicated (A) and predicted FL pairs (P) as RQ(A,P ) and
comparing it to RQ(A,G) of indicated FL pairs with the ground truth G. These
results are summarized in Table 5 averaged across all images for each report gen-
erator tested. As can be seen, the RQ(A,P ) has good correlation with RQ(A,G)
and the overall concordance correlation coefficient[9] with the ground truth at
0.997. In comparison, using the real/fake classifier model[10], the concordance
correlation coefficient was lower at 0.831 since the location errors could not
be verified. These results show the potential of fact-checking models for error
detection during inference in clinical workflows even when no ground truth is
available.

4 Conclusions
In this paper, we have presented a new fact-checking model for chest X-ray
reports that detects errors in findings and their reported locations. The model
has a high concordance coefficient with the ground truth for error estimation
pointing to its utility as a surrogate for ground truth during inference. Future
work on the FC model will address findings omitted from reports, and explore
ways of incorporating it during the training phases to further improve report
generators.

Disclosure of Interests. The authors have no competing interests.
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