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Abstract. Quantitative analysis of lymph node volume is instrumen-
tal in the diagnosis and treatment of cancer. However, automatic seg-
mentation models for lymph nodes necessitate pixel-level labeling, which
is both time-consuming and labor-intensive. The scarcity of pixel-level
annotations has thus spurred interest in label-efficient learning as a po-
tential solution. Considering the variance of shapes and locations, and
the low-contrast appearance of lymph nodes in computed tomography
scans, we propose a new incomplete annotation strategy called orthog-
onal partial-instance annotation, in which only two orthogonal slices of
a small portion of lymph nodes are annotated. To segment as many
lymph nodes as possible from such sparse annotations, we propose a
prototype-based label-efficient learning framework with a specifically de-
signed loss. Specifically, we extract intra-batch prototypes from the out-
put features of the encoder and store inter-batch prototypes using a
momentum-smoothing approach. To re-inject the extracted information
from the two kinds of prototypes, we introduce a feature augmenta-
tion module that utilizes the extracted prototypes to enhance features.
To further complement the predictions generated from enhanced fea-
tures with those from original features, we design a reliability-based
co-teaching strategy based on feature similarity. Experiments demon-
strate that our proposed framework outperforms other methods on two
mediastinal lymph node datasets. Our implementation is available at
https://github.com/HiLab-git/WCODE-PIA.
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Fig. 1. Illustrations of PIA and oPIA with different annotated ratios. Red represents
the pixels annotated by human experts. (a) ground truth - 100%, (b) PIA - 50%, (c)
orthogonal PIA - 50%, (d) PIA - 20%, and (e) orthogonal PIA - 20%.

1 Introduction

Lung cancer is characterized by the development of malignant neoplasms, which
manifest as uncontrolled cell proliferation within the pulmonary tissues. These
neoplasms can also metastasize to adjacent anatomical structures within the
lung, such as the lymph nodes, resulting in similar clinical manifestations [1]. As
a result, accurate identification and segmentation of mediastinal lymph nodes are
critical for evaluating disease progression, facilitating cancer diagnosis, and guid-
ing therapeutic strategies [4,16]. Clinically, contrast-enhanced chest Computed
Tomography (CT) scans are the most frequently favored modality in the diag-
nostic process. Moreover, not only are the enlarged lymph nodes (e.g., those with
a short-axis diameter greater than 10 mm) of diagnostic significance, but smaller
lymph nodes can also aid in diagnosis, as suggested by [13,17]. Although deep
learning methods [3,19] have achieved remarkable success in automatic segmen-
tation, accurately annotating target areas is time-consuming and labor-intensive
due to the relatively low contrast between lymph nodes and surrounding tissues
in CT scans, as well as the highly variable shapes, sizes, and locations of the
lymph nodes.

Label-efficient learning methods, such as using inexact [6,9], incomplete [8,22],
and inaccurate [7,20] annotation, have been proposed to reduce the annotation
burden. The challenge of inexact and inaccurate learning lies in providing ade-
quate edge information, which is extremely crucial for lymph node segmentation
with CT scans. More importantly, current label-efficient learning focuses on the
segmentation goal of only a single target region. For tasks with multiple tar-
get regions, such as lymph nodes [16] and Crohn’s disease [8], many methods
will suffer a significant performance degradation. To address these problems,
Wang et al. [16] and Ju et al. [8] developed their algorithms for instance-level
incomplete annotations at the image- (partial-instance annotation, PIA) and
slice-level (target-level incomplete annotation, TIA), respectively. However, TIA
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necessitates the labeling of all slices. With the help of the lymph node atlas,
PIA (as shown in Fig. 1 (b) and (d)) is a more intuitive choice for lymph node
annotation. Considering that labeling lymph nodes on 3D images is still a costly
process, we propose a more sparse annotation method called orthogonal PIA
(oPIA) (as shown in Fig. 1 (c) and (e)). In this way, a lymph node instance
requires labeling only a single slice from the horizontal and coronal plane, which
has been proven effective by [2].

We propose several strategies to better leverage oPIA, which is also applica-
ble to PIA. 1) Due to oPIA’s extremely sparse annotating information, we design
a Prototype-based Feature Enhancement (PFE) strategy. Intra- and inter-batch
prototypes are extracted to better aggregate foreground information within and
between batches. Then, an attention module is introduced to re-inject reliable
foreground information from the prototypes into the features. Finally, two pre-
dictions are generated by utilizing the original and enhanced features. 2) To
further complement the two predictions, a reliability-based co-teaching strategy
is developed. We obtain pseudo labels with high confidence and then evaluate
the pixel-level reliability of each prediction through the features before the last
layer of the network. Then, complementary information is transferred by learning
pseudo labels from the perspective (the reliability map) of another prediction. 3)
A combination of losses is advocated to better mine foreground and background
information from oPIA, which is the basis for the effectiveness of the previous
two strategies. Generally, we propose a Reliability-based Co-teaching framework
enhanced with Intra- and Inter-batch Prototypes (ReCo-I2P) to address incom-
plete annotation learning in the extremely sparse and multi-objective scenario.
Experiments show that our proposed framework outperforms other state-of-the-
art (SOTA) methods on both oPIA and PIA.

2 Method

Fig. 2 illustrates the proposed oPIA learning framework named ReCo-I2P. We
introduce VNet [10] with one encoder θe and one decoder θd as the trainable
model. During training, in addition to the prediction P1 in the normal inference
process, the encoder’s feature outputs are enhanced by the proposed prototype-
based feature enhancement module and then subjected to decoder inference once
more to get another prediction P2. During inference, only the inference of P1 is
needed. For the convenience of the following description, we define X, Y as a
training image and the corresponding oPIA.

2.1 Prototype-based Feature Enhancement (PFE)

Prototypes can aggregate category or object information across the entire dataset,
providing more informative guidance for the learning of sparse annotations. We
denote P c ∈ RB×1×S as the predicted probability map of class c. F ∈ RB×C×S

represents the feature used for prototype extraction. B denotes the batch size
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Fig. 2. The overall framework of our approach, which contains a prototype-based fea-
ture enhancement (PFE) module assisted with a reliability-based co-teaching strategy.

and S is the spatial size. The extracting process of one prototype rc ∈ R1×C of
class c in batch-level is defined as:

rc = norm

(∑B×S
i P c(i) · F (i)∑B×S

i P c(i)

)
(1)

where F (i) is a C-channel vector of the i-th pixel of F , while P c(i) is the pre-
dicted probability. norm(·) denotes normalization with 2-norm. In our imple-
mentation, the probability map is down-sampled to the same size as the output
feature map of the encoder first, and then the prototype is computed.

However, the prototypes generated this way ignore the feature diversity and
aggregation of sparse annotation information across batches. Thus, in addition
to the intra-batch prototypes, we add a memory bank which contains N inter-
batch prototypes. Once an intra-batch prototype rintra is extracted, we calculate
cosine similarity with every inter-batch prototype rinter and select the one with
the smallest similarity to update:

i∗ = argmin
i

({
SimCos(rintra, r

i
inter)|i ∈ {1, 2, ..., N}

})
(2)

ri
∗

inter = γ × ri
∗

inter + (1− γ)× rintra, γ ∈ [0, 1] (3)

SimCos(·, ·) denotes the computation of cosine similarity and γ is a hyperpa-
rameter of the memoried ratio.
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To re-inject useful information of rintra and rinter into the features, we select
the inter-batch prototype which is the most similar to the intra-batch prototype
to enhance the features using the attention module shown in Fig. 2 (b). Tak-
ing the computation between an intra-batch prototype rintra and f ∈ R1×C ,
a pixel from the feature to be enhanced, as an example. They are first lin-
early projected into a low-dimensional space, obtaining lintra = linearr(rintra)
and lf = linearf (f). Then, the attention map W is calculated through W =

softmax(lTf × lintra), and apply it to lintra through l
′

intra = W × lintra. We
can obtain l

′

inter in the same way. Finally, after the concatenation of l
′

intra and
l
′

inter, a linear transformation with LeakyReLU activation is performed to get
l
′
. The enhanced feature fout is obtained by adding l

′
and f together, which is

then subjected to the decoder.

2.2 Reliability-based Co-teaching Strategy

Through the enhancement mentioned in Section 2.1, we inject reliable foreground
information across batches into the second prediction P2. Thus, P1 contains a
more reliable background prediction, while P2 predicts the foreground pixels
more confidently. To better utilize the complementary information from each
other, firstly, we compute the corresponding confidence maps C1 and C2 for the
two soft predictions P1 and P2 by comparing the predicted probability of each
pixel. A high-confident pseudo label Y is generated through simple comparison,
which provides a better target for our designed co-teaching strategy:

Y (i) =

{
H1(i), C1(i) ≥ C2(i)

H2(i), C1(i) < C2(i)
(4)

where H1 and H2 are hard labels generated by P1 and P2. However, Y inevitably
has noise, with most of such occurrences being observed at the edge of the
foreground areas. Therefore, we assess the reliability of predictions P1 and P2

through the features F
′
before the final classification layer. The class center fc is

first generated from F
′
through an average of pixels of class c. Then, the ith pixel

of reliability maps R1 and R2 is calculated through R1(i) = SimCos(fc, F
′

1(i))
as an example. Finally, we design a co-teaching [7] learning strategy to robustly
learn from the pseudo label Y from the perspective of another prediction. We
utilize the weighted Cross-Entropy loss to complete this design:

LwCE(Ŷ , Y ;R) =
−
∑

i(R(i)×
∑

c Yc(i)logŶc(i))∑
i R(i)

(5)

Ŷ and Y are the prediction and learning objectives, respectively. R is the weight
map. The final loss for reliability-based co-teaching is:

LReCo = LwCE(P1, Y ;R2) + LwCE(P2, Y ;R1) (6)
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Table 1. Comparison with other methods on LNQ2023 and CT Lymph Node dataset
(20%) on DSC(%) and ASSD(mm). The bold represents the best-performed method.

Method

LNQ2023 CT Lymph Node (20%)

oPIA PIA oPIA PIA

DSC↑ ASSD↓ DSC↑ ASSD↓ DSC↑ ASSD↓ DSC↑ ASSD↓

UpperBound - - - - 67.46±15.10 5.13±3.98 67.46±15.10 5.13±3.98

LowerBound 11.33±7.96 31.78±25.04 39.22±20.74 24.49±16.39 5.95±5.08 25.10±15.67 44.07±20.61 15.43±13.63

Co-teaching [7] 41.52±19.53 43.20±43.84 42.93±18.62 34.52±40.66 42.20±15.18 22.52±12.22 40.79±15.03 22.51±12.19

TriNet [20] 44.08±18.99 28.77±26.87 43.78±19.43 29.40±35.76 30.67±14.11 20.91±11.41 17.58±11.36 59.40±17.29

NRDice [15] 40.38±18.85 57.30±53.37 42.05±19.93 39.83±38.65 22.97±12.27 49.04±16.41 25.46±13.28 44.28±17.17

GCE [21] 13.52±8.62 26.00±15.69 41.45±19.09 20.66±12.21 6.32±4.86 23.53±10.77 47.12±18.83 14.02±10.51

RMD [5] 42.62±18.65 35.81±41.91 43.21±18.98 30.03±44.19 30.03±14.81 40.70±18.02 29.34±14.82 39.43±16.17

DeSCO [2] 40.46±22.73 25.83±24.05 37.32±19.31 40.42±42.40 33.06±14.42 27.71±11.61 33.90±14.39 25.90±11.98

DBDMP [16] 50.24±14.90 24.18±32.77 54.59±17.14 17.00±21.64 49.94±16.06 15.53±9.14 51.99±16.75 13.69±8.72

ReCo-I2P(Ours) 53.94±14.94 16.29±22.32 57.32±17.08 12.63±14.48 51.59±15.50 14.33±8.12 58.26±15.23 8.75±5.50

To learn from oPIA, a combination of Cross-Entropy loss LCE , Tversky loss
LTversky [12] and partial Cross-Entropy loss LpCE [14] is leveraged:

Lseg(Ŷ , Y ) = LCE(Ŷ , Y ) + LTversky(Ŷ , Y ) + LpCE(Ŷ , Y ) (7)

LCE and LTversky can provide stable supervision signals and allow the predic-
tion of false positives. And different from the LpCE calculated on all labeled
pixels in scribble label [9], including the pixels of background, calculations are
only performed on the annotated foreground pixels in our implementation. This
design allows correctly labeled pixels to be well-learned while promoting the
predictions of more foreground pixels. The overall loss is defined as follows:

Ltotal = 0.5× LoPIA + ϵt × LReCo (8)

where LoPIA = Lseg(P1, Y ) + Lseg(P2, Y ) is the loss calculated between oPIA
Y and the predictions P1, P2. Following [16], we define ϵt based on a ramp-up
function: ϵt = ϵ × e−5×(1−t/tmax)

2

. In this way, only when the model’s features
are well learned is the co-teaching strategy implemented to make a more stable
and reliable learning process.

3 Experiments

Datasets and Evaluation Metrics. We validated the effectiveness of our
method on two publicly available datasets, which are the mediastinal Lymph
Node Quantification Challenge (LNQ2023) dataset [4], and a refined version [1]
of the CT Lymph Node dataset [11]. LNQ2023 contains 513 contrast-enhanced
CT volumes, of which 393 cases are partially annotated for training, while the
remaining 120 samples are fully annotated and split into 20 and 100 for vali-
dation and test. CT Lymph Node contains 89 contrast-enhanced CT volumes
obtained from the National Institutes of Health Clinical Center, which are aver-
agely divided for five-fold cross-validation. All 3D scans are cropped to the lung
region by Totalsegmentator [18]. For evaluation, the Dice Similarity Coefficient
(DSC) and the Average Symmetric Surface Distance (ASSD) are utilized.
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Fig. 3. Qualitative segmentation results on LNQ2023 dataset with oPIA. TP, FP, and
FN are generated from the comparison between the ground truth and the prediction.

Implementation Details. We performed experiments on one NVIDIA RTX
2080Ti. The patch size was set to 64 × 128 × 224 for both datasets during our
patch-based training. For the LNQ2023 dataset, the best-performing model on
the validation set was selected as the final result, while for the CT Lymph
Node dataset, the model from the final epoch was selected. For the settings
of hyperparameters, the memory ratio γ in eq. 3 was 0.99. The number of inter-
batch prototypes N was 3 and 2 for the LNQ2023 and CT Lymph Node datasets.
The α of LTversky was 0.3 in eq. 7. ϵ and tmax was set to 0.1 and 100 in eq. 8,
respectively. Unlike other lymph node segmentation methods, there were no
post-processing strategies utilized.

Comparison with SOTAs. As pixel-level incomplete annotation shares similar
scenario with inaccurate annotation, we evaluated our proposed method against
seven state-of-the-art approaches from both inaccurate and incomplete supervi-
sion methods: 1) Co-Teaching [7], 2) TriNet [20], 3) NRDice [15], 4) GCE [21],
5) RMD [5], and 6) DBDMP [16], in addition to 7) DeSCO [2], which utilizes the
orthogonal annotation. The UpperBound model was trained using full annota-
tions and the LowerBound model was trained solely on oPIA or PIA with LCE

and LDice. The LowerBound results of the LNQ2023 dataset are not accessi-
ble due to the unavailability of the fully annotated training set. Furthermore, as
some methods are not specifically designed for orthogonal annotation, we provide
performances under oPIA and PIA for a fair and comprehensive evaluation.

The quantitative results are presented in Table 1. Notably, the performances
of nearly all methods decline on oPIA, indicating that oPIA presents a more
challenging supervision signal than PIA. However, our proposed method demon-
strates significant and stable performance improvements on both datasets, re-
gardless of whether oPIA or PIA is leveraged. On the LNQ2023 dataset, our
proposed ReCo-I2P achieved an average DSC of 53.94% with oPIA and 57.32%
with PIA, outperforming the best state-of-the-art method, DBDMP, by 3.7% and
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Table 2. Effectiveness of different modules on validation and test set of LNQ2023
dataset with orthogonal partial-instance annotation. Lseg represents the designed loss
for oPIA in eq. 7. Dropout and PEF represent different feature augmentation methods.
The impact of LReCo with/without the assistance of R is finally explored.

Lseg

Augmentation LReCo Validation Set Test Set

Dropout PFE w/o R w R DSC↑ ASSD↓ DSC↑ ASSD↓

7.99±7.30 49.85±45.67 11.33±7.96 31.78±25.04

✓ 37.54±19.81 38.83±27.28 49.40±17.63 26.54±32.84

✓ ✓ 39.46±19.44 34.16±23.92 50.40±17.73 24.26±41.49

✓ ✓ 40.79±19.83 34.00±26.34 51.90±17.35 21.09±29.42

✓ ✓ ✓ 44.98±19.67 26.70±25.53 53.29±16.27 16.93±28.70

✓ ✓ ✓ 45.52±19.00 21.60±25.95 53.94±14.94 16.29±22.32
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Fig. 4. Sensitivity analysis of the instance preserving ratio on CT Lymph Node dataset
(left) and the number of inter-batch prototypes on LNQ2023 dataset (right) with oPIA.

2.7% on DSC, respectively. On the CT Lymph Node dataset, ReCo-I2P trained
with PIA achieved an ASSD of 8.75mm, which is notably close to the Upper-
Bound’s result of 5.13mm. The visualization results, shown in Fig. 3, clearly
demonstrate that the segmentation results of our proposed method are closer to
the ground truth with fewer false positive regions and more recalls.

Ablation Study. To evaluate the effectiveness of each component, we con-
ducted a comprehensive ablation study on the LNQ2023 dataset. Table 2 presents
the quantitative improvements of key modules in our proposed framework. Ad-
ditionally, we performed a sensitivity analysis to assess the impact of the anno-
tated ratio of lymph nodes and the number of inter-batch prototypes. As shown
in Fig. 4, our proposed method maintains stable segmentation performance and
does not experience significant performance degradation, even when only a small
percentage of the lymph nodes are annotated orthogonally.

4 Conclusions

To summarize, our proposed ReCo-I2P framework, which leverages the informa-
tion aggregating ability of the prototype and the co-teaching strategy, success-
fully learns from a novel, cost-friendly, and efficient annotating method of lymph
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nodes called orthogonal partial-instance annotation. The reliable foreground
information is extracted and re-injected by prototype-based feature enhance-
ment. In addition, complementary information between predictions is transferred
through the reliability-based co-teaching strategy. As shown in the results, our
method achieves optimal performance on both PIA and oPIA. This indicates
that our method is not only applicable to annotate new lymph node datasets
under the setting of oPIA but also to improve the annotation quality of exist-
ing lymph node datasets (PIA). However, there are not many publicly available
datasets that label all lymph nodes in images in the current public community.
A proper and comprehensive evaluation of this task remains to be determined.
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