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Abstract. Neurological diseases encompass a diverse range of condi-
tions such as neurodegenerative diseases and neurodevelopmental disor-
ders. Developing a general model to assist in the diagnosis of multiple
neurological diseases is essential in clinical practice, as it can help re-
duce misdiagnosis rates and alleviate the burden on physicians. How-
ever, most existing diagnostic models are designed for specific neuro-
logical disease scenarios and show poor performance when applied to
multiple diseases. To this end, we present a semantic-assisted frame-
work, called Neuro-AMS, a Neuro-informed Age-aware and Medical
knowledge-integrated Strategy for diagnosis of multiple brain disorders.
Specifically, we employ a vision encoder based on age-aware strategy
to further enhance performance by leveraging the potential relationship
between age and neurological diseases. Additionally, we extract seman-
tic features from labels and integrate corresponding medical knowledge
embeddings, constructing knowledge-level label features with enhanced
semantics. These knowledge-level label features guide the vision encoder
for capturing higher-level semantic representations through the align-
ment of image-text pairs. Our method is evaluated on four public brain
disease datasets, and experimental results demonstrate that our method
achieves consistent and statistically significant improvement compared
with three public benchmarks and three specialized models.

Keywords: Neurological disease diagnosis · Vision language models ·
Medical domain knowledge · Age-aware strategy.

1 Introduction

Neurological diseases involve a variety of conditions, including neurodegenerative
diseases and neurodevelopmental disorders. These conditions bring a devastating
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effect on the central nervous system, contributing significantly to poor health and
disability worldwide. According to a study by Steinmetz et al. [19] over 3 billion
people worldwide were affected by nervous system disorders in 2021. Notably,
neurological diseases such as Alzheimer’s Disease (AD) and Autism Spectrum
Disorder (ASD) rank among the top ten most prevalent diseases [19]. However,
neurological diseases often have a high clinical misdiagnosis rate due to the ho-
mogeneous nature of brain Magnetic Resonance Imaging (MRI), which demands
expert-level knowledge and diagnostic experience. Therefore, developing an au-
tomated diagnostic model for multiple neurological diseases is crucial in clinical
practice.

Several deep learning-based methods have emerged and gained wide atten-
tion due to their ability to reduce diagnostic costs and improve accuracy [6,12,5].
However, most state-of-the-art (SOTA) deep learning models are designed for
specific disease diagnosis tasks [10,13,11], limiting their applicability as compre-
hensive diagnostic tools for multiple neurological diseases. Furthermore, these
models primarily rely on single modality information, overlooking the rich se-
mantic information embedded in disease labels and the valuable medical domain
knowledge that could further enhance diagnosis performance.

Recently, Contrastive Language-Image Pre-training (CLIP) [16] has shown
great potential, especially in medical image analysis, since it can align image-text
information in a shared latent space [20,26]. This capability offers a promising
foundation for developing general diagnostic models. While several classification
methods leveraging image-text alignment have achieved promising results in nat-
ural images and 2D medical images. These Vision-Language Models (VLMs) are
predominantly pre-trained on 2D imaging data [16,24,1]. This limitation hinders
their ability to handle 3D volumetric data, which is essential for neurological
analysis. Furthermore, these methods show poor performance compared to task-
specific approaches [22], as they struggle to generate discriminative text repre-
sentations from limited label information and lack training strategies specifically
optimized for classification tasks.

In this paper, we present Neuro-AMS, a Neuro-informed Age-aware and
Medical knowledge-integrated Strategy for diagnosis of multiple brain disorders.
The main idea of this framework is to leverage disease semantics to supervise
vision encoder in learning more discriminative representations of disease, while
fusing age-guided features as diagnostic priors for neurological diseases. Unlike
traditional methods that treat labels as discrete vectors, our approach lever-
ages the semantics of the labels through a pre-trained language model from
CLIP. Furthermore, we incorporate disease-specific medical knowledge into la-
bel features to construct knowledge-level label representations, which preserves
class semantics while leveraging fine-grained domain knowledge to enhance the
discrimination of text features. Besides, recognizing the significant correlation
between age and neurological diseases [8], we also adopt a vision encoder with
age-aware strategy to fully leverage age-related information. Compared to three
public benchmarks and three SOTA specialized models, our Neuro-AMS demon-
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Fig. 1. The overall framework of our proposed Neuro-AMS, consisting of two parts: a
Text-aware Encoder and an Age-aware Vision Encoder. Here, we optimize the seman-
tic consistency between knowledge-level label features and age-aware image features,
guiding the Age-aware Vision Encoder in capturing more distinguishing features of
diseases.

strates consistent and statistically significant improvements across four public
datasets with multiple neurological diseases.

2 Methodology

Consider a set of brain MR Image-label pairs (x, y), where x ∈ X represents a
T1-weighted (T1w) MR image, and y ∈ Y is corresponding disease label from a
set of n classes. Our goal is to develop an automatic and robust approach to map
each T1w MR image xi to its corresponding label yi. The proposed framework
shown in Fig. 1 consists of two main components: a Text-aware Encoder and
an Age-aware Vision Encoder. The main idea is to utilize meaningful knowledge
features extracted by the Text-aware Encoder to guide the age-aware vision
encoder for capturing more crucial image features that are highly related to
diseases.

2.1 Text-aware Encoder

To effectively utilize text information, we propose a novel Text-aware Encoder to
extract text features inspired by TCP [23]. The Text-aware Encoder consists of
two pre-trained Text Encoders from CLIP which are responsible for extracting
label and knowledge features and a Knowledge Embedding Module (KEM) to
integrate domain-specific knowledge (details provided in Fig. 2).

Specifically, the domain knowledge about diseases collected from the Unified
Medical Language System (UMLS) [25] is first combined into a sentence (e.g.
"AD: A degenerative disease of the brain characterized by the insidious onset of
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Fig. 2. Architecture of our proposed Text-aware Encoder, which consists of two compo-
nents: a Text Encoder and a Knowledge Embedding Module (KEM). Knowledge from
UMLS is mapped by the KEM to prompt tokens of the corresponding class, generating
knowledge-level label embedding WKE .

dementia... The condition primarily occurs after the age of 60."), which is fed
into the pre-trained text encoder, to obtain a knowledge embedding Ek ∈ Rn×D,
where n is the number of classes and D is dimension of the text feature. Then,
the knowledge embedding Ek is projected into the corresponding class prompt
Pk = F (Ek) using our proposed KEM module. In detail, the KEM consists of two
hidden layers. In the first layer, the knowledge embedding Ek is projected into
a hidden space using a weight matrix W1 ∈ RD×Dh , where Dh is the dimension
of the hidden space. In the second layer, the output from the hidden space
is mapped to the feature space using a weight matrix W2 ∈ RDh×Dctx′ , where
Dctx′ is the product of the prompt length Lp and the dimension of the prompt D.
Finally, the knowledge embedding Ek ∈ Rn×D is projected into knowledge tokens
Pk ∈ Rn×Dctx′ , which are then reshaped into Pk ∈ Rn×Lp×D to be inserted into
the middle layers of the Text Encoder ϕ.

For the second part, we use a prompt in the form of "A photo of a [Class]",
where Class corresponds to the disease class. These prompts are encoded by the
Text Encoder ϕ. Thus, we can obtain the input textual tokens T0 = {P,C}, where
P ∈ Rn×Lp×D represents the prompt tokens, and C ∈ Rn×1×D is the set of class
tokens. These textual tokens T0 are fed into the first l layers of the Text Encoder
ϕ to obtain the intermediate embedding Tl, similar to TCP. Subsequently, the
knowledge tokens Pk are inserted into Tl to generate the knowledge-level label
tokens T

′

l ,

T
′

l = [Pk,1, Pk,2, ..., Pk,Lp
, Tl,Lp+1], (1)

where Pk,i denotes the i-th index of Pk in the second dimension, and Tl,j denotes
the j-th index of Tl in the second dimension. Finally, the output from the last
layer L is treated as the Knowledge-level label Embedding (KE) WKE ∈ Rn×D.
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Fig. 3. Comparisons of representative T1w MR images (hippocampi in red boxes, and
peripheral brain sulci in yellow boxes) from 60-year-old NC and AD subjects, as well
as a 90-year-old NC subject.

2.2 Age-aware Vision Encoder

Most neurological diseases bring prominent changes in local brain structures in
T1w MR images, while global changes being relatively less noticeable. These local
changes are significant in the early stages of disease, which carry the most diag-
nostic value [14]. For example, as shown in Fig. 3, the brain structural features
of a 60-year-old patient with AD show more pronounced hippocampal atrophy
(indicated by the red box) compared to a Normal Control (NC) subject with the
same age, while other regions (yellow box) exhibit minimal changes. However,
when compared to a 90-year-old NC subject, the differences in the peripheral
sulcal regions (yellow box) become more pronounced, while the hippocampal
region (red box) shows less noticeable changes due to AD [17].

Based on the above medical knowledge, to build the relationship between
brain MR image and age, we propose an Age-aware Vision Encoder based on
a novel hierarchical age learning strategy. Specifically, the Age-aware Vision
Encoder includes two branches: 1) a pre-trained vision encoder from y-aware
contrastive learning [4] that can align age and brain structure in a common
latent space and 2) a one-hot encoding module. T1w MR images are fed into
the pre-trained vision encoder to extract image features Iori = {iori}nj=1, and
age information is encoded through one-hot encoding A = {a}nj=1 based on
an age group separation every decade, to obtain high-level age features. These
features are concatenated and further fused by an MLP to generate age-aware
image features I = {i}nj=1. Finally, the semantics produced by the Text-aware
Encoder is used to supervise the Age-aware vision encoder, further learning the
relationships between disease, brain structure, and age-related features.

2.3 Training Strategy

During the training phase, all Age-aware Vision Encoder and Knowledge Embed-
ding Module are updated while freezing the pre-trained Text Encoder from CLIP.
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The training is supervised by minimizing the distance between image features I
and text features T (i.e., WKE) via cosine similarity, as shown in Eq. (2):

si,j =
Ii · Tj

∥Ii∥ · ∥Tj∥
=

∑D
k=1 I

k
i × T k

j√∑D
k=1(I

k
i )

2 ×
√∑D

k=1(T
k
j )

2

, (2)

This produces a similarity matrix Sn×n, where n is the number of classes. To
minimize the distance, we use cross-entropy loss CE(·), as follows:

LCE =
1

2

[
CE(S, Y ) + CE(S

′
, Y )

]
, (3)

where S
′ represents the transpose of S.

3 Experiments and Results

In this section, we first describe the datasets, metrics, and implementation details.
Then, we present comparison results with SOTA methods, along with an ablation
study.

3.1 Datasets and Metrics

The dataset used is collected from four public cohorts: ABIDE [3], ADHD-200
[2], ADNI [7], and OASIS [9]. The dataset comprises 2833 T1w MR images from
aged from 6 to 96 years. Specifically, it contains 499 subjects of ASD, 280 subjects
of Attention Deficit Hyperactivity Disorder (ADHD), 342 subjects of Early Mild
Cognitive Impairment (EMCI), 307 subjects of Late Mild Cognitive Impairment
(LMCI), 540 subjects of AD, and 865 Normal Controls (NC). Datasets are split
into training and testing sets at an 80:20 ratio. We use Precision, Recall, F1-score,
and the area under the curve (AUC) to evaluate the performance.

3.2 Implementation Details

All experiments are conducted on an NVIDIA Tesla V100 GPU with 32 GB
of RAM. The Adam optimizer is used with a learning rate of 1 × 10−4 and a
batch size of 6. The model is trained for 100 epochs. Brain T1w MR images are
first resampled to a uniform voxel spacing of 1.0 × 1.0 × 1.0 mm3, followed by
foreground cropping and resizing to a shape of (160× 192× 160).

3.3 Performance Comparison

The classification results of Neuro-AMS are shown in Fig. 4. First, we evaluate
the performance of Neuro-AMS against three publicly available Vision-Language
benchmarks: CLIP [16], BiomedCLIP [24], and XCoOp [1]. While these models
originally use 2D Vision Encoders, we ensured a fair comparison by replacing
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Fig. 4. Confusion matrix of Neuro-AMS for multiple neurological diseases classification.

their 2D Encoder with the same Vision Encoder as used in our model along with
the same experimental settings. Table 1 shows the comparisons, and results
demonstrate that Neuro-AMS outperforms all these benchmarks.

Second, we compare Neuro-AMS against other SOTA methods designed for
specific diseases, as shown in Table 2. To ensure a fair comparison, we selected
models which are tested on comparable testing sets. To account for both binary
and multi-class classification, we use the recall of each class as the evaluation
metric. As shown in Table 2, our method outperforms those specialized models
in most classes except for AD (with slightly lower performance). Notably, it
achieves a 36.57% improvement for ADHD compared to LEFMs [21]. When
compared to 3D-CNN [18], it shows a 10.84% improvement for ASD, with NC
remaining similar. Additionally against Hierarchical AD [15], we achieves higher
recall scores in EMCI, LMCI, and NC, with improvements of approximately
13%.

Table 1. The quantitative comparison across three vision-language benchmarks, in
terms of aAUC, aPRE, aREC, and aF1, where "a" represents the macro average.

Metric

Method aAUC aPRE aREC aF1

CLIP [16] 91.90 74.73 75.44 75.39
BiomedCLIP [24] 91.92 74.53 76.32 75.62
XCoOp [1] 92.85 76.32 77.28 76.83
Neuro-AMS 93.60 78.52 79.24 79.12
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Table 2. Performance comparison against SOTA models designed for specific diseases,
in terms of Recall ("-": denotes no results available).

Metric

Method AD ADHD ASD EMCI LMCI NC

LEFMs [21] - 42.00 - - - 73.26
3D-CNN [18] - - 71.16 - - 79.34
Hierarchical AD [15] 86.70 - - 66.30 63.50 62.70
Neuro-AMS 83.50 78.57 82.00 79.41 78.69 73.26

3.4 Ablation Results

We conducted a series of ablation experiments to assess the effectiveness of var-
ious modules within Neuro-AMS. The quantitative results of these experiments
are summarized in Table 3.

As observed, ablation studies show that both the semantic-assisted method
and age-aware strategy improve performance over the baseline by 18.2% and
10.7%, respectively. A performance increase of 1.3% observed when integrating
the age-aware strategy into the semantic-assisted framework further validates
its contribution. Furthermore, in the knowledge-integrated ablation experiment,
incorporating medical knowledge resulted in a 2.5% average performance im-
provement, highlighting the value of integrating medical knowledge to enhance
feature discrimination compared to using disease labels alone.

Table 3. Ablation experiments on the multi-disease dataset comprising four public
cohorts, in terms of aAUC, aPRE, aREC, and aF1, where "a" represents the macro
average vector<vector<int» generateMatrix(int n)

Baseline Text-assistance Age-aware aAUC aPRE aREC aF1
Label Knowledge

64.61 52.35 68.52 58.43
81.35 70.51 71.64 63.75
91.90 74.73 75.44 75.39
93.10 75.81 76.92 75.60
93.60 78.52 79.24 79.12

4 Conclusion

We have introduced Neuro-AMS, a semantic-assisted framework for diagnosing
multiple neurological diseases. The core advantage of our method lies in its abil-
ity to incorporate the inherent semantics of medical conditions and the influence
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of age, significantly enhancing the model’s capacity to differentiate among neu-
rological diseases. Experimental results demonstrate that our approach not only
outperforms other SOTA methods but also demonstrates a marked improve-
ment in diagnostic accuracy and robustness. Neuro-AMS shows great promise
for advancing clinical applications by offering more accurate and interpretable
diagnosis of multiple neurological diseases, paving the way for more robust and
interpretable diagnoses. Moving forward, we plan to expand the framework to
include a broader range of neurological diseases and incorporate more diverse
data modalities to further enhance its diagnostic capabilities.

Acknowledgments. This work was supported in part by National Natural Science
Foundation of China (grant numbers 82441023, U23A20295, 62131015, 82394432), the
China Ministry of Science and Technology (S20240085, STI2030-Major Projects-2022Z-
D0209000, STI2030-Major Projects-2022ZD0213100), Shanghai Municipal Central Gui-
ded Local Science and Technology Development Fund ( No. YDZX20233100001001),
The Key R&D Program of Guangdong Province, China (grant number 2023B0303040
001), and HPC Platform of ShanghaiTech University.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.

References

1. Bie, Y., Luo, L., Chen, Z., Chen, H.: Xcoop: Explainable prompt learning for
computer-aided diagnosis via concept-guided context optimization. In: Interna-
tional Conference on Medical Image Computing and Computer-Assisted Interven-
tion. pp. 773–783. Springer (2024)

2. consortium, A..: The adhd-200 consortium: a model to advance the translational po-
tential of neuroimaging in clinical neuroscience. Frontiers in systems neuroscience
6, 62 (2012)

3. Di Martino, A., Yan, C.G., Li, Q., Denio, E., Castellanos, F.X., Alaerts, K., An-
derson, J.S., Assaf, M., Bookheimer, S.Y., Dapretto, M., et al.: The autism brain
imaging data exchange: towards a large-scale evaluation of the intrinsic brain ar-
chitecture in autism. Molecular psychiatry 19(6), 659–667 (2014)

4. Dufumier, B., Gori, P., Victor, J., Grigis, A., Wessa, M., Brambilla, P., Favre,
P., Polosan, M., Mcdonald, C., Piguet, C.M., et al.: Contrastive learning with
continuous proxy meta-data for 3d mri classification. In: Medical Image Computing
and Computer Assisted Intervention–MICCAI 2021: 24th International Conference,
Strasbourg, France, September 27–October 1, 2021, Proceedings, Part II 24. pp.
58–68. Springer (2021)

5. Fan, J., Cao, X., Wang, Q., Yap, P.T., Shen, D.: Adversarial learning for mono-or
multi-modal registration. Medical image analysis 58, 101545 (2019)

6. Iqbal, M.S., Heyat, M.B.B., Parveen, S., Hayat, M.A.B., Roshanzamir, M., Al-
izadehsani, R., Akhtar, F., Sayeed, E., Hussain, S., Hussein, H.S., et al.: Progress
and trends in neurological disorders research based on deep learning. Computerized
Medical Imaging and Graphics 116, 102400 (2024)



10 Z. Zhang et al.

7. Jack Jr, C.R., Bernstein, M.A., Fox, N.C., Thompson, P., Alexander, G., Harvey,
D., Borowski, B., Britson, P.J., L. Whitwell, J., Ward, C., et al.: The alzheimer’s dis-
ease neuroimaging initiative (adni): Mri methods. Journal of Magnetic Resonance
Imaging: An Official Journal of the International Society for Magnetic Resonance
in Medicine 27(4), 685–691 (2008)

8. Kowalska, M., Owecki, M., Prendecki, M., Wize, K., Nowakowska, J., Kozubski,
W., Lianeri, M., Dorszewska, J.: Aging and neurological diseases. In: Senescence-
physiology or pathology. IntechOpen (2017)

9. LaMontagne, P.J., Benzinger, T.L., Morris, J.C., Keefe, S., Hornbeck, R., Xiong,
C., Grant, E., Hassenstab, J., Moulder, K., Vlassenko, A.G., et al.: Oasis-3: longitu-
dinal neuroimaging, clinical, and cognitive dataset for normal aging and alzheimer
disease. medrxiv pp. 2019–12 (2019)

10. Liu, M., Zhang, D., Adeli, E., Shen, D.: Inherent structure-based multiview learning
with multitemplate feature representation for alzheimer’s disease diagnosis. IEEE
Transactions on Biomedical Engineering 63(7), 1473–1482 (2015)

11. Liu, Y., Liu, M., Zhang, Y., Guan, Y., Guo, Q., Xie, F., Shen, D.: Amyloid-β
deposition prediction with large language model driven and task oriented learning
of brain functional networks. IEEE Transactions on Medical Imaging (2025)

12. Liu, Y., Liu, M., Zhang, Y., Sun, K., Shen, D.: A progressive single-modality to
multi-modality classification framework for alzheimers disease sub-type diagnosis.
In: International Workshop on Machine Learning in Clinical Neuroimaging. pp.
123–133. Springer (2025)

13. Lohani, D.C., Rana, B.: Adhd diagnosis using structural brain mri and personal
characteristic data with machine learning framework. Psychiatry Research: Neu-
roimaging 334, 111689 (2023)

14. Okoye, C., Obialo-Ibeawuchi, C.M., Obajeun, O.A., Sarwar, S., Tawfik, C., Waleed,
M.S., Wasim, A.U., Mohamoud, I., Afolayan, A.Y., Mbaezue, R.N.: Early diagnosis
of autism spectrum disorder: a review and analysis of the risks and benefits. Cureus
15(8) (2023)

15. Qin, Y., Cui, J., Ge, X., Tian, Y., Han, H., Fan, Z., Liu, L., Luo, Y., Yu, H.:
Hierarchical multi-class alzheimers disease diagnostic framework using imaging and
clinical features. Frontiers in Aging Neuroscience 14, 935055 (2022)

16. Radford, A., Kim, J.W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry, G.,
Askell, A., Mishkin, P., Clark, J., et al.: Learning transferable visual models from
natural language supervision. In: International conference on machine learning. pp.
8748–8763. PmLR (2021)

17. Rao, Y.L., Ganaraja, B., Murlimanju, B., Joy, T., Krishnamurthy, A., Agrawal, A.:
Hippocampus and its involvement in alzheimers disease: a review. 3 Biotech 12(2),
55 (2022)

18. Shahamat, H., Abadeh, M.S.: Brain mri analysis using a deep learning based evo-
lutionary approach. Neural Networks 126, 218–234 (2020)

19. Steinmetz, J.D., Seeher, K.M., Schiess, N., Nichols, E., Cao, B., Servili, C., Cav-
allera, V., Cousin, E., Hagins, H., Moberg, M.E., et al.: Global, regional, and
national burden of disorders affecting the nervous system, 1990–2021: a systematic
analysis for the global burden of disease study 2021. The Lancet Neurology 23(4),
344–381 (2024)

20. Teng, L., Zhao, Z., Huang, J., Cao, Z., Meng, R., Shi, F., Shen, D.: Knowledge-
guided prompt learning for lifespan brain mr image segmentation. In: International
Conference on Medical Image Computing and Computer-Assisted Intervention. pp.
238–248. Springer (2024)



Age-aware Brain Disorder Diagnosis with Medical Knowledge 11

21. Tian, L., Zheng, H., Zhang, K., Qiu, J., Song, X., Li, S., Zeng, Z., Ran, B., Deng,
X., Cai, J.: Structural or/and functional mri-based machine learning techniques for
attention-deficit/hyperactivity disorder diagnosis: A systematic review and meta-
analysis. Journal of affective disorders (2024)

22. Windsor, R., Jamaludin, A., Kadir, T., Zisserman, A.: Vision-language mod-
elling for radiological imaging and reports in the low data regime. arXiv preprint
arXiv:2303.17644 (2023)

23. Yao, H., Zhang, R., Xu, C.: Tcp: Textual-based class-aware prompt tuning for
visual-language model. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. pp. 23438–23448 (2024)

24. Zhang, S., Xu, Y., Usuyama, N., Xu, H., Bagga, J., Tinn, R., Preston, S., Rao,
R., Wei, M., Valluri, N., et al.: Biomedclip: a multimodal biomedical foundation
model pretrained from fifteen million scientific image-text pairs. arXiv preprint
arXiv:2303.00915 (2023)

25. Zhang, X., Wu, C., Zhang, Y., Xie, W., Wang, Y.: Knowledge-enhanced visual-
language pre-training on chest radiology images. Nature Communications 14(1),
4542 (2023)

26. Zhao, Z., Liu, Y., Wu, H., Wang, M., Li, Y., Wang, S., Teng, L., Liu, D., Cui, Z.,
Wang, Q., et al.: Clip in medical imaging: A comprehensive survey. arXiv preprint
arXiv:2312.07353 (2023)


	Neuro-AMS: Neuro-informed Age-aware and Medical Knowledge-integrated Strategy for Diagnosis of Multiple Brain Disorders 

