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Abstract. Patients with valvular heart disease often exhibit motion
characteristics such as artery movements and anatomic characteristics,
thus extracting dynamic features from coronary angiography (CAG) is
of great significance for diagnosing. Given the challenge of limited anno-
tated medical imaging data, we propose a novel self-supervised learning
framework that integrates masked video modeling (MVM) and video con-
trastive learning, enabling the model to learn representations with both
strong instance discriminability between video segments and local per-
ceptibility between neighboring frames. Specifically, our framework con-
sists of three key components: an off-the-shelf frozen encoder, an online
encoder-decoder following the MVM pipeline and a momentum encoder
composed of an exponential moving average of previous students. We
enhance the integration of contrastive learning and MVM in mainly two
ways: the frozen encoder converts the supervision of masked reconstruc-
tion from low-level pixels to high-level features; an augmentation strat-
egy called frame shifting, is introduced specifically for video contrastive
learning. To validate the effectiveness of our proposed method, we first
conducted self-supervised pre-training on over 50,000 self-collected, un-
labeled CAG sequences. Subsequently, we performed supervised fine-
tuning using two small-scale labeled CAG diagnostic datasets, achieving
state-of-the-art performance (98.1% and 75.0% F1-Score, respectively)
in both supervised and self-supervised video recognition domains. Our
code is publicly available at: https://github.com/ZmingShao/ConMVM.

Keywords: Masked Video Modeling · Contrastive Learning · Self-Supervised
Learning · Coronary Angiography.
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1 Introduction

Coronary artery disease (CAD) continues to be the leading cause of death in
the developed world, presenting a significant challenge for global health policies.
Significant advancements in deep learning have led to notable improvements in
the diagnosis and prognosis of CAD patients with invasive coronary angiography
(CAG) over the past few decades. However, current deep learning methods for
CAG primarily focus on supervised image recognition, with major challenges:
1) the high cost of annotating CAG imaging data, which is a common issue
in medical imaging; 2) some conditions are difficult to diagnose confidently by
analyzing features of single-frame image, e.g. patients with arrhythmia, which
affects cardiac remodeling and abnormal blood, causes irregularities in their CAG
sequences; 3) the difficulty to identify subtle differences in coronary artery blood
flow patterns, ventricular and atrium anatomy, and epicardial vessels motion
that are altered in patients with valvular heart disease [22, 23]. In response, we
attempt to introduce a video self-supervised learning (SSL) method to build a
video foundation model for multiple CAG-related downstream diagnostic tasks.

Currently, there are two mainstream paradigms in visual SSL: contrastive
learning (CL) and masked learning. Contrastive learning works by minimizing
the distance between positive samples in the feature space while pushing away
negative samples, which promotes the model’s ability to learn discriminative
features. Masked learning, on the other hand, involves predicting the informa-
tion of masked patches from a small number of visible patches, encouraging the
model to learn semantic relationships between neighboring patches in an image.
Recently, many works in the field of image SSL have attempted to combine both
approaches [16, 17, 32], aiming to leverage both advantages. Such combination
is effective for video SSL as well, allowing the model to capture representations
with both strong instance discriminability across video segments and local coher-
ence among adjacent frames, while there has been little progress in research on
it currently. This paper, therefore, conducts an in-depth study on this subject.

Firstly, we identify several key challenges in combining masked learning and
contrastive learning: (1) In contrastive learning, the encoder encodes the com-
plete input into the feature space, while in masked learning, the output of the
encoder contains incomplete information, and the decoder typically predicts pixel
values, neither of which are suitable for directly constructing contrastive learning.
(2) Contrastive learning requires two encoders that input different augmented
views of the original image. However, the high proportion of masking in masked
learning is not compatible with too strong augmentations, since the disparity
between views caused by them will be excessively amplified, resulting in false
positive views [16]. To address the challenge (1), this paper introduces an off-
the-shelf frozen encoder, which allows the supervision signal in masked recon-
struction to be encoded from low-level pixels into high-level features, making the
output of decoder applicable for both reconstruction loss and contrastive loss.
To address the challenge (2), the paper proposes a weaker augmentation tailored
to the characteristics of video data, called frame shifting, which enhances video
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contrastive learning while avoiding conflicts with masked learning. In summary,
the main contributions of this paper are as follows:

1. We combine masked learning and contrastive learning in the video SSL do-
main, and apply this to pretraining on over 50,000 unlabeled CAG sequences.

2. We change the routine masked pixel modeling to masked feature modeling
and propose an novel augmentation specifically for video data, frame shifting,
both of which promote combining masked learning with contrastive learning.

3. Our foundation model achieves 98.1% and 75.0% F1-Score on two CAG
downstream tasks, respectively, surpassing the state-of-the-art (SOTA) al-
gorithms in both supervised and self-supervised video recognition domains.

2 Related Work

Contrastive Learning focuses on learning instance discriminative represen-
tations by ensuring that multiple views of the same image are mapped closer
in the feature space while pushing apart representations of different images.
SimCLR [4] extensively explores data augmentations in contrastive learning to
create different view for the same image. To efficiently manage and utilize neg-
ative samples, MoCo [15] introduces a memory queue to maintain a diverse set
of negative examples. BYOL [13], on the other hand, eliminates the need for
explicit negative samples by incorporating an online encoder that predicts the
output of a momentum-updated encoder, effectively preventing training collapse.
To further simplify BYOL, SimSiam [5] replaces the momentum updates with
a stop-gradient mechanism, reducing computational complexity while maintain-
ing stability. Recent advancements in contrastive learning have integrated Vision
Transformers (ViT) [8] as the backbone architecture, leading to further improve-
ments. For instance, MoCov3 [6] extends MoCo with transformer-based feature
extraction, while DINO [3] builds upon BYOL, employing a self-distillation strat-
egy to enhance representation learning.

Masked Visual Modeling. Inspired by the success of masked language mod-
eling in natural language processing [7], masked visual modeling seeks to learn
effective visual representations by reconstructing the original input from par-
tially observed data. SimMIM [30] and MAE [14] reconstruct raw pixel val-
ues, albeit with different masking strategies. SimMIM reconstructs entire image
patches, whereas MAE masks a significantly larger portion of the input and
reconstructs only the visible patches, making it more effective for pretraining.
To capture richer semantic features, MaskFeat [29] introduces low-level local
features (HOG) as the reconstruction target. BEiT [1] leverages discretized to-
kens produced by an offline tokenizer to guide the encoder’s training. In recent
years, the framework of masked image modeling have been extended to video
self-supervised learning, leading to the development of several notable methods,
including BEVT [27], MaskedFeat [29], MAE-ST [11] and VideoMAE [25, 26].
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3 Method

3.1 Framework

The overall framework is shown in pre-training stage of Figure 1, which consists
of three parts: an off-the-shelf frozen encoder, an online encoder-decoder, and
a momentum encoder. Contrastive learning is built between the features recon-
structed by the online encoder-decoder and those obtained from the momen-
tum encoder, which encodes an augmented view of the complete input. Specif-
ically, given a video clip V s ∈ RT×H×W×C , we obtain a sequence of tokens
xs = {xi

s}Ni=1 according to the cube embedding strategy [25]. On the other
hand, we create an augmented view V t from V s, and similarly process it to get
a sequence of tokens xt.
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Fig. 1. An illustration of the overall pipeline.

Frozen encoder F is a powerful encoder pre-trained in a MVM manner, which
encodes all tokens of xs into high-level features ẑs = F(xs), serving a role similar
to that of a teacher model in feature distillation. We select a larger scale ViT
[8] architecture (e.g. ViT-B/L/H) and perform pre-training in advance. During
pre-training of the entire framework, we freeze the weights of this encoder.

Online encoder-decoder Fs-G is a typical MVM pipeline. First, the tube
masking strategy M [25] is applied to the input token sequence xs to obtain
visible tokens xv

s = M(xs). The encoder Fs encodes only the visible tokens xv
s

to obtain their representations zv
s = Fs(x

v
s), with the corresponding positional

embeddings incorporated. Then, the masked portion m, in the form of learnable
tokens with positional embeddings added, is concatenated back with the visi-
ble portion zv

s . The concatenated full token sequence is fed into the decoder G
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for reconstruction zs = G(concat(zv
s ,m)), where loss is calculated only for the

masked portion of predictions from decoder by comparing them with the cor-
responding features ẑs encoded by the frozen encoder F mentioned above. Due
to distillation-like design of the frozen encoder, the online encoder still performs
well even using a smaller scale ViT (e.g., ViT-S).

Momentum encoder Ft processes the augmented view V t of the original
video to implement contrastive learning. Its architecture is identical to that of
the online encoder, with parameters updated through the exponential moving
average (EMA). The momentum encoder Ft takes all augmented tokens xt as
input, and the feature sequence it encodes zt = Ft(xt) is compared with that
reconstructed by the online encoder-decoder zs. After simple mean pooling and
projection, a contrastive loss is calculated between the two.

3.2 Combining MVM with CL

Masked Feature Modeling. To combine MVM with contrastive learning, a
natural idea is to use the features output by the masked encoder for two pur-
poses: feeding them to the decoder for reconstruction loss and using them to
compute contrastive loss with the output from another encoder. However, since
the masked encoder receives incomplete input information, CMAE [16] designed
an extra decoder called feature decoder to reconstruct feature vectors that repre-
sent the complete information, which are then used to calculate contrastive loss.
In fact, we can unify them into one single decoder to reconstruct merely fea-
tures instead of pixels. Specifically, we adopts a new masked learning paradigms
called masked feature modeling [28], introducing an additional off-the-shelf frozen
encoder to supervise the masked reconstruction.

Frame Shifting. In contrastive learning, siamese encoders receive different
augmented views of the original data. The augmentations typically used include
random resized cropping, flipping, color jittering, random gray-scaling, etc. How-
ever, a large proportion of masking severely damages the input information to
the online encoder, which may significantly amplify the disparity between inputs
of the two encoders caused by too strong spatial transformations (e.g. cropping,
flipping) [16]. Based on the above, we propose a weaker augmentation strategy
called frame shifting according to video characteristics. Specifically, let us denote
V ∈ RL×H×W×C as a raw video with L frames. We need to sample two video
views, each having T frames, as the aforementioned V s and V t. First, we define
d = ⌊L−T+1

2 ⌋, and then we randomly sample the starting frame indexes based
on the following uniform distribution ts ∼ U(0, d), tt ∼ U(d, 2d) to obtain two
views V s = V [ts : ts + T ],V t = V [tt : tt + T ] that are equally transformed
by a shift along the frame dimension. In addition to frame shifting and some
inappropriate augmentations mentioned above, we also applied two extra aug-
mentations commonly used in contrastive learning, random Gaussian blurring
and color jittering.
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3.3 Training Objective

Contrastive Loss. We adopt the commonly used loss function in contrastive
learning, InfoNCE loss [24]. Following the common practice in contrastive learn-
ing [4, 15, 13, 5], we add projection-prediction and projection heads after the on-
line encoder-decoder and the momentum encoder respectively. After mapping
zs and zt through the heads, we calculate the cosine similarity ρ between them,
then the InfoNCE loss is computed using the following formula:

Lct = − log
exp(ρ+/τ)

exp(ρ+/τ) +
∑B

j=0 exp(ρ
−
j /τ)

(1)

where ρ+ and ρ−j represents the cosine similarity of positive pair, i.e. two views
from the same input, and of the j-th negative pair, which comes from other data
within the same batch B as the current input, respectively.

Reconstruction Loss. Traditional masked learning methods based on pixel
reconstruction typically use the L2 loss function, while we adopts the smooth L1
loss function for Masked Feature Modeling, as it is more robust to outliers. The
mathematical formula for the reconstruction loss function is:

Lrc =

{
0.5∥ẑs − zs∥22 if ∥ẑs − zs∥2 < 1

∥ẑs − zs∥1 − 0.5 otherwise
(2)

The final loss function is computed by weighted summing the reconstruction
loss Lrc and contrastive loss Lct:

L = λrcLrc + λctLct (3)

4 Experiments

4.1 Implementation and Datasets

Pre-training. We generally follow the settings of VideoMAEv2 [26] for basic
hyperparameters during pre-training. Besides, the frozen encoder is scaled to
ViT-Large model by default, while the online encoder is scaled to ViT-Small
model for lightweight and efficient. Regarding the optimization objective, we set
equal weights of 1.0 by default for both the reconstruction loss and contrastive
loss. All pre-training experiments are conducted on 1 NVIDIA A800 GPUs.

A total of 57,857 unlabeled CAG sequences collected from Chinese PLA
General Hospital, Bo Ai Hospital of Huanghua City, Qingyun County People’s
Hospital of Shandong Province and Qixia People’s Hospital of Yantai City served
as pre-training dataset, first used for preparing the frozen encoder, followed
by the entire model. These imaging sequences have a frame rate of 15 FPS, a
resolution of 512 × 512, and an average length of 52 frames. We filtered out
sequences with fewer than 21 frames, leaving a final dataset of 47,794 sequences.
Each sequence was uniformly sampled at 3-frame intervals to extract 16 frames.
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Fine-tuning. Given the scarcity and limited feature diversity of CAG imag-
ing data, we discarded most commonly used data augmentation strategies (e.g.
random resized cropping, mixup, label smoothing), and fine-tuned the model for
only 10 epochs with a linearly scaled learning rate lr = base_lr×batch_size/64,
while keeping all other settings consistent with VideoMAEv2 [26].

We selected two CAG diagnostic tasks as downstream benchmarks: severe
mitral regurgitation (MR) and severe aortic stenosis (AS), both of which have
altered ventricular, atrium anatomy and epicardial vessels motion. This was a
retrospective study enrolling patients from 2016.12 to 2025.1, from Chinese PLA
General Hospital. The MR dataset consists of 605 CAG sequences, including
316 patient cases and 289 controls, while the AS dataset consists of 361 CAG
sequences, including 121 patient cases and 240 controls. During fine-tuning, the
imaging parameters of all CAG sequences remained consistent with those in pre-
training stage. The dataset was split into a 3:1 ratio for training and testing.
Performance was evaluated on the test set using precision, recall, and F1-score
as the final assessment metrics.

4.2 Comparison with the SOTA Methods

We selected several recent SOTA methods in both supervised and self-supervised
video recognition fields and conducted comparative experiments (See Table 1) on
two benchmarks mentioned above: MR and AS. 1) For supervised algorithms,
we selected both Convolution-based [31, 10, 9, 12] and ViT-based [2, 20, 19, 18,
21] methods. Our algorithm improves the F1-score by 3.4% on MR and 5.9%
on AS compared to the best-performing supervised algorithm, Video Swin [21].
2) For self-supervised algorithms, considering the limitation in available data,
we only selected algorithms pre-trained with pure video data [11, 26], i.e. no
mixture of video and other modalities (e.g. image [27, 28]) was used for pre-
training. Our method outperforms the best-performing self-supervised approach,
VideoMAEv2 [26], with a F1-score gain of 2.2% on MR and 2.9% on AS.

4.3 Ablation Study

Frame Shifting. As shown in Table 2, directly introducing video contrastive
learning into the MVM pipeline, using only the commonly applied augmenta-
tions from image contrastive learning, resulted in almost no performance gain.
However, with frame shifting introduced, there was a significant performance
improvement (+1.5% F1), indicating that this augmentation is crucial for video
contrastive learning and meanwhile is well-suited to the MVM paradigm.

Contrastive Loss. Since the batch size was not large enough due to the lim-
ited data scale, we also tested two extra contrastive loss functions, SimSiam [5]
loss and BYOL [13] loss, which do not depend heavily on mass negative sam-
ples. However, the experimental results (Table 2) showed that the InfoNCE loss
performed the best, probably owing to limited feature diversity of data, while
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Table 1. Comparison with SOTA methods on MR and AS

Method CAG MR CAG AS

Precision(%) Recall(%) F1(%) Precision(%) Recall(%) F1(%)

supervised

TPN [31] 51.1 95.8 66.7 87.5 46.7 60.9
CSN [12] 98.0 81.0 88.7 59.4 63.3 61.3

SlowFast [10] 74.7 89.9 81.6 83.3 50.0 62.5
SlowOnly [10] 88.0 95.8 91.7 83.3 50.0 62.5

X3D [9] 93.1 73.8 82.4 70.8 56.7 63.0
TimeSformer [2] 91.9 95.3 93.6 57.1 77.4 65.7

MViTv2 [20] 98.6 89.5 93.8 81.0 56.7 66.7
UniFormer [19] 93.3 93.7 93.5 61.5 77.4 68.6

UniFormerv2 [18] 99.1 90.3 94.5 74.1 64.5 69.0
Video Swin [21] 94.9 94.5 94.7 79.2 61.3 69.1

self-supervised

MAE-ST [11] 98.1 88.6 93.1 66.7 60.0 63.2
VideoMAEv2 [26] 97.8 94.1 95.9 73.3 71.0 72.1

Ours 97.1 99.2 98.1 84.0 67.7 75.0

the SimSiam loss, due to requirement for Ft to share weights with Fs instead of
EMA updating, even resulted in a negative performance gain (-0.2% F1).

We also tested different settings for λct. The experimental results indicate
that masked learning and contrastive learning are equally important, thus only
by assigning λrc = λct = 1.0 can optimal performance be achieved. This also
reflects the effectiveness of our strategy in integrating both paradigms.

Frozen encoder. Building on the above, we introduced the frozen encoder F
to change supervision of MVM from pixels to features and tested at different
ViT scales. The experimental results (Table 2) showed that Masked Feature
Modeling at larger scale further facilitated the integration of contrastive learning
and masked learning (+0.3% F1 for ViT-B, +0.7% F1 for ViT-L).

5 Conclusion

We propose a novel video SSL method that combines MVM and video contrastive
learning, applied to pre-training on large-scale unlabeled CAG sequences. We
delve into an key question: how to integrate masked learning and contrastive
learning so that the two complement each other effectively, and we propose
two main solutions: 1) changing the reconstruction target of masked learning
from pixel values to encoded features; 2) introducing frame shifting to generate
augmented views for video contrastive learning. We validated the transferability
of the foundation model on two small-scale manually labeled CAG diagnostic
datasets and demonstrated the effectiveness of the two proposed solutions.
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Table 2. Ablation study on MR. We integrate the proposed components step by step
and conduct ablation experiments on relevant parameters at each step, where * indi-
cates the optimal parameters we selected as the default settings for other experiments.

Lct F λct F1(%)
Baseline [26] - - - 95.9
+ Momentum encoder InfoNCE - 1.0 95.9

+ Frame shifting aug.
SimSiam

- 1.0
95.7

BYOL 96.6
InfoNCE* 97.4

+ Frozen encoder InfoNCE

ViT-B 1.0 97.7

ViT-L*
0.1 97.0
1.0* 98.1
2.0 97.2

Disclosure of Interests. The authors have no competing interests to declare that
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