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Abstract. Alzheimer’s Disease (AD) and Lewy Body Dementia (LBD)
often exhibit overlapping pathologies, leading to common symptoms that
make diagnosis challenging and protracted in clinical settings. While
many studies achieve promising accuracy in identifying AD and LBD at
earlier stages, they often focus on discrete classification rather than cap-
turing the gradual nature of disease progression. Since dementia devel-
ops progressively, understanding the continuous trajectory of dementia
is crucial, as it allows us to uncover hidden patterns in cognitive decline
and provides critical insights into the underlying mechanisms of disease
progression. To address this gap, we propose a novel multi-scale learn-
ing framework that leverages hierarchical anatomical features to model
the continuous relationships across various neurodegenerative conditions,
including Mild Cognitive Impairment, AD, and LBD. Our approach em-
ploys the proposed hierarchical graph embedding fusion technique, inte-
grating anatomical features, cortical folding patterns, and structural con-
nectivity at multiple scales. This integration captures both fine-grained
and coarse anatomical details, enabling the identification of subtle pat-
terns that enhance differentiation between dementia types. Additionally,
our framework projects each subject onto continuous tree structures,
providing intuitive visualizations of disease trajectories and offering a
more interpretable way to track cognitive decline. To validate our ap-
proach, we conduct extensive experiments on our in-house dataset of
308 subjects spanning multiple groups. Our results demonstrate that
the proposed tree-based model effectively represents dementia progres-
sion, achieves promising performance in intricate classification task of
AD and LBD, and highlights discriminative brain regions that contribute
to the differentiation between dementia types. Our code is available at
https://github.com/tongchen2010/haff,
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1 Introduction

Alzheimer’s Disease (AD) and Lewy Body Dementia (LBD) are two of the most
common neurodegenerative disorders, with AD accounting for 60-80% of cases
and LBD contributing approximately 4.2% [III8]. Both lead to irreversible
brain changes, severe cognitive decline, and ultimately death. Early diagnosis
and studying disease progression are crucial, as they enable patients and fami-
lies to plan care. [I]. However, differentiating AD and LBD is challenging due
to overlapping neuropathological and symptomatic features. For example, LBD
patients may also exhibit beta-amyloid plaques typical of AD, while AD patients
can show parkinsonian symptoms resembling Parkinson Disease Dementia, a sub-
type of LBD [g]. This overlap often results in misdiagnosis and delayed diagnosis,
approximately 18 months for LBD and 14.8 months for young AD patients after
initial hospital visit [I0]. Although current AD biomarkers—such as CSF Af
42 /A 840 ratios, tau tests, and plasma ptaul8l—are effective, they are invasive,
expensive, and not widely accessible, prompting interest in non-invasive alter-
natives like structural magnetic resonance imaging (sMRI) and diffusion tensor
imaging (DTI) for differential diagnosis [T9124].

Recent advancements in deep learning have demonstrated promising perfor-
mance in the early diagnosis of AD[22I21]. However, many of these approaches
are primarily focused on classification tasks, which limits their ability to cap-
ture the continuous progression of dementia. A recent study introduced a tree
embedding framework that models the continuous progression of AD by en-
coding anatomical features across different disease stages [23]. This framework
not only achieves state-of-the-art performance in multi-class classification but
also projects patient data onto a tree-like structure, facilitating a more intu-
itive visualization of AD progression. Despite these strengths, the approach re-
lies on coarse anatomical features, potentially overlooking small brain regions
that are critical for distinguishing between overlapping dementia syndromes.
For instance, previous research has noted that only limited areas within the
temporal lobe exhibit significantly greater cortical thinning in AD compared to
LBD [I3128)29], therefore, it’s necessary to include fine-scale measures to differ-
entiate AD and LBD. Furthermore, its application is limited to AD and does
not demonstrate the capacity to address the complexities of multi-dementia pro-
gression.

To overcome the limitations of prior work, we propose a multi-scale feature
fusion framework that captures hierarchical anatomical characteristics to model
the continuous transitions of various dementia stages, CN, MCI, AD and LBD.
Our method employs a graph neural network-based model to integrate structural
connectivity (SC) and cortical folding pattern features at different scales so that
it captures the fine-grained regional differences that’s able to differentiate AD
and LBD. Coarse regions are derived from the neuroanatomical atlas, ensuring
consistency with well-established cortical parcellation framework. In contrast,
hub-based patches are obtained using an innovative cortical folding pattern rep-
resentation, namely 3-Hinge Gyrus (3HG) [2I3I26] where 3HG is defined by
the conjunction of gyri from three different directions. 3HG can serve as cor-
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tical hubs [27] and 3HG connectomes has outperforms traditional region-based
connectomes in classifying AD stages, underscoring the benefits of finer-scale
brain region [II]. The Multi-scale Graph Embedding Fusion (MGEF) block of
our method effectively combines the graph emebddings of both atlas-based and
hub-based anatomical features, enabling improved differentiation between AD
and LBD. To validate our approach, we conducted extensive experiments on our
in-house dataset, demonstrating its effectiveness in addressing the intricate task
of differentiating four brain conditions and visualizing the dementia progression.
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Fig. 1. illustrates our overall framework. For each subject, we generate two graphs: one
for atlas-based and one for 3HG-based anatomical features. We feed the graph data
into our proposed framework, which learns meaningful representations for classification
and subsequently generates a tree structure to visualize dementia progression.

2 Methods

2.1 Anatomical Feature Selection

We leverage vertex-based cortical features (CF) to characterize cortical mor-
phology, including cortical thickness (CTh), curvature, sulcal depth (SD), local
gyrification index (LGI), and fractal dimension (FD). CTh, SD, curvature, and
LGI are derived using Freesurfer tools [5], while FD is computed with our in-
house tool using the Minkowski-Bouligand dimension. Notably, measures such
as CTh have been shown to correlate strongly with dementia severity and are
widely used to differentiate clinical stages such as AD, CN, and MCI [1220].
Additionally, FD quantifies the complexity of cortical patterns by examining
changes across different scales, and has recently emerged as a valuable metric
for assessing cortical atrophy in dementia [I7U30].
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2.2 Modal Architecture

Graph Convolution Network Fig.[l]illustrates the overview of our proposed
framework. Each subject is characterized by two types of graph inputs, namely
GP = (VP,EP) for atlas-based data and G? = (V9, £9) for 3HG-based data, where
V denotes a set of nodes and £ denotes a set of edges connecting those nodes.
For any node v, its feature is denoted by x, and the matrix X represents the
features of all nodes. The edge between nodes u and v is denoted by e,,, and
the adjacency matrix A is constructed from these edges, representing the SC.
The label for each subject is given by y. For the model, we first employ two dual
graph convolutional networks (GCN) [9], defined by functions F(-) that operate
on the respective graph data. The node embeddings for the two modalities are
computed as EP = FP(XP, AP) and EY = F1(X?, A?), where EP € R"™* and
E9 ¢ R*** denote the node embeddings for each graph input projected into a
k-dimensional latent space, with r and s being the numbers of atlas regions and
3HG, respectively.

Multi-scale Anatomy-aware Fusion After F(-), EP are fed into a multi-
head self-attention block to capture the global contextual information of XP?.
In contrast, instead of applying self-attention to X9, we introduce a cross at-
tention mechanism, termed Anatomy-aware Cross Attention(ACA)(Eq. , that
enables each z¢, identified by its label m, to query the corresponding X?. This
mechanism allows the 3HG nodes to extract relevant information from the atlas
regions. The cross attention is formulated as follows:

1= EWq, KP=FE'Wg, VP=FE'Wy,

k

where Wg, Wk, and Wy are learnable projection matrices, and dj, is the di-
mensionality of the node embeddings. Following the cross-attention mechanism,
we perform our proposed Anatomy-aware Mean Pooling(AMP)(Eq. . In the
equation, R; represents a set of 7 located in atlas region j and e} € R? is the
embedding of node z. AMP aggregates the ¢ in each atlas region, and if a
region has no 3HG (i.e., |R;| = 0), its pooled embedding is defined as the zero
vector in R?.

Attention(Q?, KP, VP) = softmax <

1
72637 1f|R]|>Oa
1Bil (2)
0 € RY, if |R;| = 0.

mj:

Finally, the pooled 3HG embeddings are combined with the atlas region em-
beddings by a simple element-wise sum to form the final feature representation
Z = EP + E? which is then processed for classification using cross-entropy loss
and tree structure learning.
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2.3 Tree Structure Learning

Prototype Model Firstly a set of a learnable prototype embeddings are de-
fined as &jearn = {€; € R¥ | i =1,2,...,C}, where &eam represents the learnable
parameters for C' classes in the k-dimensional latent space where k = r x d. Each
prototype embedding e; represents a class y; in the latent space. Then we min-
imize the distance between the z; and its corresponding prototype embeddings
e; using 12 distance and the distance-based loss of each sample towards its cor-
responding prototype center is formulated as Laistance = ||2i — ey||§ where e, is
the corresponding class embedding of the input x;. To enhance generalization, a
batch-wise mean squared error (MSE) loss over b samples was incorporated into
the overall loss function: Lyisg = 7 Z?:l |h(zp, 8) —e,||*. The tree loss combines
the distance loss and MSE loss where « is a hyperparameter:

Etree = Ldistance + QEMSE (3)

Learnable Prototype Embedding A set prototype embeddings &;,;; € RE**
is firstly initialized such that all prototype embeddings are equally spaced in
terms of euclidean distance. The learnable embedding matrix Ejearn € RExk
is defined by Eearn = Einit - W + b where W and b are learnable parameters.
Prototype learning consists of two loss functions:

a. Classification loss ensures the learnable prototype embeddings are aligned
with their class labels using a cross-entropy loss. L jassification 1S the classification
loss of the prototype embedding to its corresponding label.

b. Ranking Loss [4] is adopted as a regularization term and also to capture
the prior knowledge of known orders between classes (e.g., CN — MCI — AD).
The similarity-based adjacency matrix S is constructed based on the following:

so if label; = label;,
Sij =4 sp if [label; —label;| =d,, forp=1,2,... F, (4)

0 otherwise.

Here, 7 and j denote the row and column indices of the matrix. The term sg repre-
sents the self-similarity values when labels are identical. The values s1, s, ..., Sk
are predefined similarity values corresponding to neighboring classes at increas-
ing distances. The thresholds di,ds, . .., d; define specific distances between la-
bels that establish adjacency, where each d, corresponds to similarity level s,,.
This setup ensures that similarity values are applied based on both label prox-
imity and predefined distance thresholds. To normalize the adjacency matrix,
we compute the Laplacian matrix L, = S — D,, where D, is the degree matrix
of S. Using this Laplacian matrix, the order constraint loss is defined as:

»Cranking = traﬂce(Ologit ' ]Ly . Oi{)git) (5)

The final loss for prototype embedding learning combines the classification loss
and the order constraint loss where [ is a hyperparameter(Eq. |5]) as follows:

Eprototype = £classiﬁcation + ﬁ[-"ranking (6)



6 T. Chen et al.

3 Experiments

3.1 Dataset

Data Preprocessing. In our study, we analyzed a dataset comprising T1-
weighted sMRI and DTT scans from 308 subjects, including 77 cognitively nor-
mal (CN), 77 MCI, 77 AD, and 77 LBD subjects. All T1-weighted MRI scans
underwent standardized preprocessing procedures as described in [25]. In brief,
the preprocessing included brain extraction using the FMRIB Software Library
(FSL), cortical surface reconstruction for both white matter and pial surfaces,
and subsequent parcellation based on the Destrieux Atlas using the FreeSurfer
toolkit [5]. DTI data were similarly preprocessed with fiber tracking conducted
using DSI Studio.

3.2 Implementation Details

All experiments were conducted using 5-fold cross-validation. The GCN model
was implemented with two GCN layers, and each multi-head attention block con-
sisted of four attention heads. For training, all models were run with 100 epochs
with a batch size of 16 and a dropout rate of 0.3. Regarding optimization, we em-
ployed the AdamW optimizer together with the ReduceLROnPlateau scheduler.
Specific hyperparameters included a learning rate of 0.001 for the classification
model and o = 0.1 and 8 = 0.3 for the prototype model.

4 Results

Table 1. Comparison of classification performance metrics for distinguishing among
CN, MCI, AD, and LBD using various methods and feature combinations.

Method Groups Feature  Accuracy (%) Sensitivity (%) Specificity (%) F1 (%)
Nemoto et al. [16] AD vs LBD VB 79.15 £ 5.22 81.54 £+ 10.43 76.77 N/A
Nakatsuka et al. [I5] AD vs LBD VB 75.00 80.00 64.00 N/A
Goto et al. [T] AD vs LBD VB 70.00 N/A N/A N/A
MLP CN vs MCI vs AD vs LBD  SC 57.10 £ 6.19 57.10 £ 5.95 85.7 £2.03 56.79 £ 5.56
SVM CN vs MCI vs AD vs LBD  SC 55.79 £ 8.14 55.79 + 8.14 85.26 + 2.69 55.46 £ 8.02
Random Forest CN vs MCI vs AD vs LBD  SC 54.85 £ 5.02 54.85 & 5.02 84.94 £ 1.65 54.07 £5.15
Logistic Regression CN vs MCI vs AD vs LBD  SC 55.48 £ 794 55.54 & 7.85 85.17 £ 2.63 54.76 £ 7.65
Our method CN vs MCI vs AD vs LBD CF+SC  61.68 & 3.12 61.35 + 4.80 87.19 + 1.07 57.42 £ 5.76

4.1 Classification

Table [1] summarizes the classification performance for CN, MCI, AD, and LBD.
Because of the pathological and symptomatic overlap, differentiating AD from
LBD is particularly challenging. Previous studies have primarily focused on
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simpler binary comparisons, such as AD versus LBD using voxel-based (VB)
method [7/I5I16], rather than tackling the complexity of a four-class classifi-
cation task. Traditional classifiers using only SC achieved moderate accuracies
between 54.85% and 57.42%, reflecting the inherent difficulty of the problem.
In contrast, our innovative approach, which seamlessly integrates CF with SC,
achieved a notable accuracy of 61.68%, demonstrating the effectiveness of mul-
timodal feature integration.

4.2 Top discriminative atlas region and 3HG

Fig. 2. (a)—(d) present the 10 most discriminative atlas regions, while (e)—(h) showcase
the top 30 discriminative 3SHG features for classification.

Fig. [2] shows the top 10 Destrieux regions contributing to the classification
task. In particular, Fig. [J(b) and (d) highlight the superior frontal gyri in both
hemispheres, consistent with studies linking impairments in working memory
and attention to AD [14]. Additionally, Fig. [2(d) underscores the superior tem-
poral sulcus (STS), with prior work reporting an approximate 50% loss in AD,
which may relate to social and cognitive deficits [6]. Fig. c) draws attention to
occipital regions, potentially linked to visual hallucinations in LBD. Fig.[2[(e)~(h)
present the top 30 discriminative 3HG features for classification. This approach
allows for the detection of microstructural changes that may be missed by tradi-
tional atlas-based methods. By complementing the atlas-based analysis, the 3HG
features enhance the sensitivity of the classification task, potentially leading to
improved diagnostic accuracy.

4.3 Embedding Tree

For the tree structure generation, we adopted a distance-based method proposed
in [23]. In Fig. |3} we present 10 learned trees to demonstrate the stability of the
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Fig. 3. Each panel (a-j) presents a disease embedding tree learned by the proposed

framework, showing how individual subjects (represented by circles) cluster according

to their disease stage. The four disease stages are color-coded: CN in , MCT in
, AD in red, and LBD in

tree structures. Although each tree’s structure shows some variability, they con-
sistently reveal a key pattern: LBD subjects tend to cluster in close proximity
to MCI and AD subjects. This clustering on the tree structure suggests that
the anatomical and connectivity features captured by our model reflect under-
lying similarities in the disease progression of LBD relative to MCI and AD.
Fig. [3(b-d),(f-j) predominantly indicate that LBD subjects are positioned near
MCI subjects while panels Fig. [3a) and (e) show LBD subjects clustering closer
to AD subjects. The tree structures provide a continuous representation of pa-
tient status. By observing patients onto the disease tree, we can learn their brain
state within the cohort. These tree structures offer a continuous representation
of patient status, allowing us to map each patient’s brain state within the co-
hort. By situating patients on the disease tree, we can compare their progression
relative to others and gain insights into the continuum of dementia progression.

5 Conclusion

In this study, we introduce a novel multi-scale learning framework that captures
hierarchical anatomical features and effectively models continuous relationships
across various dementia conditions. Our approach not only outperforms both
traditional and deep learning models in a multi-dementia classification task but
also provides a comparative and interpretable visualization of patient progres-
sion through a tree-structured representation. This tree structure offers valu-
able insights into disease trajectories, enabling a more nuanced understanding of
neurodegenerative progression. Furthermore, our framework identifies the most
discriminative atlas regions and 3HG features, highlighting key regions that dis-
tinguish different forms of dementia.
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