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Abstract. Despite the success of deep learning in medical image segmentation, 

domain shifts caused by variations in scanners and imaging protocols often de-

grade performance, limiting real-world clinical deployment. Domain generaliza-

tion (DG) aims to address this issue by learning robust models that generalize 

well across different domains. While existing DG methods based on feature-

space domain randomization have shown promise, they suffer from a limited and 

unordered search space of feature styles. In this work, we propose MixStyleFlow, 

a novel DG approach that utilizes normalizing flows to explicitly model the dis-

tribution of domain feature styles. By sampling domain feature styles from the 

learned normalizing flows and mixing them with original feature statistics along 

the feature channel dimension, our method effectively expands and diversifies 

domain features in a controllable manner. We evaluate MixStyleFlow on two 

medical segmentation tasks—prostate MRI and fundus imaging—demonstrating 

superior generalization performance on unseen target-domain data. Our results 

highlight the potential of normalizing flows for improving domain generalization 

in medical image segmentation, paving the way for more robust deep learning 

models capable of handling diverse clinical scenarios. The code is available at 

https://github.com/Reza-Safdari/MixStyleFlow. 

Keywords: Domain Generalization, Medical Image Segmentation, Normalizing 

Flows, Feature Perturbation, Feature Style Augmentation. 

1 Introduction 

Deep learning has revolutionized medical image segmentation, enabling accurate de-

lineation of anatomical structures and pathological regions in different imaging modal-

ities like MRI, CT, and fundus photography [1]. However, a major challenge is the 

sensitivity of these models to domain shifts variations in image distributions due to 

different scanners, imaging protocols, patient populations, and acquisition settings [2, 

3]. Models trained on specific domain data often perform poorly on unseen domains, 

limiting their generalizability and robustness in real-world clinical scenarios. 
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Domain generalization (DG) addresses this challenge by learning models that can 

generalize well to unseen domains without requiring access to target-domain data dur-

ing training [4, 5]. In medical imaging, achieving robust DG is crucial due to the heter-

ogeneous nature of data arising from multi-institutional resources and diverse clinical 

practices [6]. Traditional approaches to tackle domain shifts include domain adaptation 

techniques, which require access to target-domain data during training [2]. However, 

collecting and annotating new data for each target domain is impractical and costly. 

Therefore, there is a pressing need for methodologies that enhance the generalization 

capability of segmentation models across diverse domains using only source-domain 

data. 

Recent DG methods have explored feature-space domain randomization techniques 

aimed at learning domain-invariant representations by perturbing feature statistics dur-

ing training [6]. Approaches such as MixStyle [7], MaxStyle [8] and their variants ma-

nipulate the style information in feature maps to simulate domain shifts, thereby en-

couraging the model to learn robust features. These methods operate on the assumption 

that content-preserving style transformations can be achieved by altering the statistics 

(e.g., mean and standard deviation) of the features. While these methods have shown 

promise results, using the statistics of source-domain data for feature perturbation may 

limit the search space and operate within a limited and unordered domain. Conse-

quently, they may not fully capture the complex variations present in real-world domain 

shifts, potentially hindering the model's ability to generalize to unseen domains. To 

address these limitations, we propose MixStyleFlow, a novel domain generalization 

framework that utilizes the power of normalizing flows to explicitly model the distri-

bution of domain feature styles. 

2 Related Work 

Feature-space domain randomization has emerged as a powerful approach for DG. Ran-

dom Convolutions (RandConv) [9] introduce a domain randomization strategy by ap-

plying convolutional layers with randomly sampled weights to input images. This ef-

fectively alters local textures while preserving global shape information, encouraging 

models to rely more on structural cues rather than superficial textures. Dynamic Style 

Augmentation (DSU) [10] enhances DG by injecting Gaussian noise into feature sta-

tistics, generating diverse style variations beyond those present in the original data. This 

technique has shown particular effectiveness in medical image segmentation. Similarly, 

Treasure in Distribution (TriD) [11] expands feature perturbations by sampling statis-

tics from a uniform distribution rather than relying solely on source-domain data. TriD 

further improves adaptability to domain shifts by employing a style-mixing strategy, 

blending original and augmented statistics along feature channels to promote domain-

invariant representations. 

Similarly, MixStyle [7] perturbs feature statistics by mixing instance-level mean and 

standard deviation from different training samples, implicitly simulating style varia-

tions across domains. MaxStyle [8] extends this idea by introducing adversarial style 

compositions, maximizing style diversity and generating more challenging training 
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examples. Beyond these methods, Exact Feature Distribution Matching (EFDM) [12] 

introduces a more precise feature perturbation approach by explicitly aligning the em-

pirical cumulative distribution functions (eCDFs) of image features. Unlike approaches 

that rely only on first- and second-order statistics, EFDM performs exact histogram 

matching in feature space, ensuring a more faithful simulation of domain shifts. By 

offering a richer set of perturbations beyond traditional Gaussian-based transfor-

mations, EFDM significantly improves the generalization capability of segmentation 

models. 

3 Method 

3.1 Background on Normalizing Flows 

Real Non-Volume Preserving (RealNVP) is a type of normalizing flow model used for 

density estimation and generative modeling [13]. It transforms a simple base distribu-

tion, such as Gaussian, into a complex target distribution through a sequence of invert-

ible transformations [14]. The core idea behind RealNVP is the use of coupling layers, 

which enable efficient computation of both the forward transformation (sampling) and 

the inverse transformation (density evaluation). Each coupling layer splits the input x 
into two parts, 𝑥1 and 𝑥2, and applies an affine transformation to one part while keeping 

the other unchanged. The transformation is defined as: 

 𝑥1
′ =  𝑥1 

𝑥2
′ =  𝑥2⊙ 𝑒xp(𝑠(𝑥1)) +  𝑡(𝑥1) 

(1) 

where 𝑠(𝑥1) and  𝑡(𝑥1) are scale and translation functions, typically parameterized by 

neural networks. The symbol ⊙ represents the elementwise (Hadamard) product. The 

inverse transformation, crucial for likelihood estimation, is easily computable as: 

 𝑥2 =  (𝑥2
′ −  𝑡(𝑥1)) ⊙ 𝑒xp(−𝑠(𝑥1)) (2) 

Since the transformation is invertible with a tractable Jacobian determinant, the log-

likelihood of a sample x under the model is computed using the change of variables 

formula: 

 

log 𝑝𝑋 (𝑥) = log 𝑝𝑍 (𝑓(𝑥)) +∑log |det
𝜕𝑓𝑖
𝜕𝑥
|

𝑖

 (3) 

where 𝑓(𝑥) maps the input to the latent space, 𝑝𝑍(𝑧) is the probability density of the 

transformed sample under a simple prior distribution (e.g., Gaussian), and det
𝜕𝑓𝑖

𝜕𝑥
 is the 

determinant of the Jacobian of the transformation. The loss function, derived from the 

negative log-likelihood (NLL) over N input samples  𝑥1,  𝑥2,   … ,  𝑥𝑁, is given by: 

 

ℒ = −
1

𝑁
∑log 𝑝𝑋 (𝑥𝑖)

𝑁

𝑖=1

 (4) 
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Minimizing this loss ensures the model effectively learns an expressive transformation 

that maps the data distribution to the Gaussian latent space while maintaining inverti-

bility and efficient density estimation. 

 

Fig. 1. The proposed MixStyleFlow framework. Phase I involves training the segmentation 

model on source datasets without domain generalization techniques. Subsequently, in Phase II, 

feature statistics (feature means and standard deviations) are extracted, and two normalizing flow 

models are trained to learn their distributions. In Phase III, the segmentation model is trained on 

source data and stylized images created through style feature augmentation at specific decoder 

layers. This augmentation is achieved by interpolating original feature statistics with in-domain 

and out-of-domain statistics sampled from the trained normalizing flow models. 

3.2 Encoder with Dual-Decoder Architecture for Segmentation 

We employed a dual-branch network presented in [8], consisting of one encoder (E) and two 

decoders. One decoder, called the segmentation decoder (𝐷𝑠), is trained using segmentation loss 

to generate the semantic mask, while the other decoder, called the image decoder (𝐷𝑖), is trained 

using reconstruction loss, allowing it to exploit both complementary image content features and 

task-specific shape features for the segmentation task Fig. 1. We also utilize the image decoder 

to apply style augmentation by randomizing the statistics (i.e., mean and standard deviation) of 

the feature maps in specific layers (the exact randomization method will be discussed in the next 

section). The reconstructed image from this decoder enables us to interpret and visualize the 

impact of the augmented features, ensuring that the randomization preserves their semantic and 

anatomical structures. For the segmentation loss 𝐿seg , we use a combination of Binary Cross-

Entropy (BCE) Loss 𝐿BCE and Dice Loss  𝐿Dice: 

 

 

𝐿seg = 𝐿BCE + 𝐿Dice 

𝐿BCE = −∑[𝑦𝑖 log(𝑦̂𝑖) + (1 − 𝑦𝑖) log(1 − 𝑦̂𝑖)]

𝑖

 

𝐿Dice =  1 −  
2∑ 𝑦𝑖𝑦̂𝑖𝑖 + 𝜖

∑ 𝑦𝑖𝑖 + ∑ 𝑦̂𝑖𝑖 + 𝜖 
 

(5) 
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here 𝑦𝑖 and 𝑦̂𝑖  represent the ground truth and predicted values, respectively, and 𝜖 is a 

small constant added for numerical stability. For the reconstruction loss, we use 𝑙2 norm 

as follows: 

 
𝐿 ec = ∑ |𝐼𝑖 − 𝐼𝑖|

2
𝑖   (6) 

here  𝐼𝑖  is the original input image and 𝐼𝑖̂ is the reconstructed image produced by the 

image decoder. 

3.3 Proposed Method: MixStyleFlow for Domain Generalization 

Our proposed MixStyleFlow framework consists of three phases that are presented in 

Fig. 1. In Phase I, we train the model on source datasets for segmentation using the 

architecture in Section 3.2, without domain generalization techniques. After training, 

in Phase II, we freeze its parameters and extract channel-wise feature statistics from 

the decoder. We then train two normalizing flow models (MuFlow for means, STDFlow 

for standard deviations) as described in Section 4.2, to learn their distributions. This 

enables (1) in-domain sampling to enrich the style space and (2) out-of-distribution 

sampling to expand it beyond the original dataset.  

In Phase III, we train the segmentation architecture on the source data and stylized 

images generated by applying style feature augmentation at specific image decoder lay-

ers. Formally, let 𝑓𝑖 ∈ ℝ
 𝑐   ℎ   𝑤 be c-dimensional feature maps extracted at a certain 

layer in the image decoder (𝐷𝑖) for image 𝑥𝑖, where h and w represent the height and 

width of the feature maps, respectively. MixStyleFlow performs style augmentation for 

𝑓𝑖 by first normalizing it with its channel-wise means and standard deviations 

 (𝑓𝑖), 𝜎(𝑓𝑖) ∈ ℝ
𝑐: 𝑓𝑖 = (𝑓𝑖 −  (𝑓𝑖)) 𝜎(𝑓𝑖)⁄  and then transforming the normalized fea-

ture with a linear combination of its channel-wise statistics { (𝑓𝑖), 𝜎(𝑓𝑖)} and sampled 

statistics from learned distributions { 𝑚𝑓 ,  𝜎𝑠𝑓} as follows: 

 
MixSty e    (𝑓𝑖) = 𝛾 ix ⊙𝑓𝑖̅ + 𝛽 ix 

𝛾 ix = 𝜆 ix𝜎(𝑓𝑖) + (1 − 𝜆 ix) 𝜎𝑠𝑓, 𝛽 ix = 𝜆 ix𝜇(𝑓𝑖) + (1 − 𝜆 ix) 𝑚𝑓 

 𝜎𝑠𝑓 ∈ ℝ
𝑐 ∼  𝑆𝑇𝐷𝐹𝑙𝑜𝑤,  

𝑚𝑓
∈ ℝ𝑐 ∼  𝑀𝑢𝐹𝑙𝑜𝑤 

(7) 

here 𝜆 ix is a coefficient used for applying interpolation between original statistics and 

sampled statistics, randomly sampled from [0, 1]. 

4 Experiments and Results 

4.1 Datasets and Evaluation Metrics 

To evaluate the effectiveness of MixStyleFlow in domain generalization for medical 

image segmentation, we conducted experiments on two segmentation tasks: prostate 

MRI segmentation and optic disc/optic cup (OD/OC) segmentation in fundus images. 

These datasets include multiple domains representing different imaging centers, scan-

ners, and acquisition protocols, ensuring a diverse and challenging evaluation setting. 

For prostate MRI segmentation, We use the Medical Decathlon [15] for training and 
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intra-domain testing, while the remaining six sites from [16] are used for testing. We 

followed [17] to preprocess MRI volumes, retaining only prostate slices, resizing them 

to 384×384, and using them as 2D training data. For OD/OC segmentation, we used 

color fundus images from five different domains [18-21], covering a total of 1,441 im-

ages, training on one source domain and evaluating the model on the remaining do-

mains (Table 1). We utilized the Dice Similarity Coefficient (DSC) for evaluating seg-

mentation performance. 

Table 1. Overview of the datasets used for training and evaluating MixStyleFlow 

Task Modality Domain Names Cases in each Domain 

Prostate Segmentation MRI 
Medical Decathlon, 

Site A–F  

32 

30; 30; 19; 13; 12; 12 

OD/OC Segmentation Fundus Image Domain1–5 195; 95; 400; 650; 101 

4.2 Implementation Details 

We trained three pairs of normalizing flows (NFs) to model the distributions of feature 

means and standard deviations from image decoder layers 2, 3, and 4, using tempera-

tures of 3.5, 2.5, and 1.5, respectively, for 100 epochs. These decoder layers were se-

lected experimentally based on preliminary results. Each NF model comprises four 

masked affine coupling flows with ActNorm layers [22]. The coupling network in-

cluded two MLPs for scale and translation, with layer dimensions [32, 64, 32], [16, 32, 

16], and [16, 32, 16] for image decoder layers 2, 3, and 4, respectively, capturing com-

plex feature relationships. The segmentation model was trained with a mini-batch size 

of 20 using the AdamW optimizer. The learning rate was 0.0001 for prostate segmen-

tation and 0.001 for OD/OC segmentation. The training steps 1,600 epochs for the pros-

tate and 100 epochs for the OD/OC segmentation. We implemented our approach in 

PyTorch on a single NVIDIA RTX 6000 GPU. 

4.3 Results 

Comparing with Other DG methods. We evaluated MixStyleFlow on both intra-do-

main (IID) and cross-site prostate segmentation tasks (Table 2). The results demon-

strate the effectiveness of our approach in improving generalization across unseen do-

mains. For the IID, MaxStyle (87.27) and MixStyleFlow (86.47) showed competitive 

performance, indicating their ability to maintain segmentation accuracy within the 

source domain. For cross-site generalization, our proposed MixStyleFlow consistently 

outperformed other methods across multiple unseen domains (Sites A–F), demonstrat-

ing its robustness to domain shifts. Compared to MaxStyle, which also performed well 

on some sites, MixStyleFlow exhibited superior generalization, particularly in more 

challenging domains such as Site E (68.5 vs. 58.43) and Site F (74.38 vs. 57.72).  

To further assess the generalization capability of MixStyleFlow, we evaluated it on 

the joint segmentation of the optic disc (OD) and optic cup (OC) in fundus images 

across multiple domains (Table 3). MixStyleFlow consistently outperformed other 
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methods in most unseen domains. Especially, in comparison with the second-best per-

forming method, TriD, our model gets the best score in all most domains with compa-

rable results on Domain 5. 

Table 2. Evaluation results (Dice scores) on the prostate intra-domain and unseen cross-site test 

sets. The 'Avg' column represents the average Dice score across the unseen domains (Site A–F). 

The best results are highlighted with bold. 

Methods IID A B C D E F Avg 

Baseline 84.94 87.94 71.38 79.74 79.61 50.18 54.17 70.5 

MixStyle 84.03 88.98 54.38 81.54 84.05 63.69 62.95 72.6 

DSU 83.11 88.21 59.24 82.24 83.04 58.56 64.03 72.55 

MaxStyle 87.27 90.20 83.94 83.28 85.8 58.43 57.72 76.56 

MixStyleFlow 86.47 90.25 83.75 84.06 85.85 68.5 74.38 81.13 

Table 3. Evaluation results for joint OD and OC segmentation in fundus images. Each cell shows 

the Dice scores for OD (first) and OC (second). The model is trained on one domain and evalu-

ated on the others. The best results are in bold. 

Methods Domain1 Domain2 Domain3 Domain4 Domain5 Avg 

SAN-SAW 
76.42, 

59.01 

83.79, 

73.23 

84.17, 

65.51 

81.83, 

62.36 

87.00, 

64.42 

82.64, 

64.91 

RandConv 
79.63, 

64.14 

85.00, 

72.40 

87.77, 

69.57 

83.08, 

64.38 

86.31, 

60.37 

84.36, 

66.17 

MixStyle 
75.67, 

60.84 

86.35, 

73.77 

85.86, 

66.60 

84.86, 

66.44 

86.54, 

65.99 

83.36, 

66.73 

EFDM 
78.79, 

57.73 

84.83, 

72.30 

85.25, 

65.94 

82.13, 

61.62 

85.43, 

63.02 

83.29, 

64.12 

DSU 
76.88, 

61.26 

84.17, 

74.10 

89.12, 

70.16 

83.53, 

63.19 

87.09, 

59.65 

84.16, 

65.67 

MaxStyle 
77.40, 

65.44 

86.95, 

74.52 

87.95, 

67.62 

84.69, 

66.05 

87.95, 

64.84 

84.99, 

67.69 

TriD 
81.86, 

66.67 

88.19, 

75.43 

89.62, 

70.85 

84.81, 

67.53 

87.88, 

66.96 

86.47, 

69.49 

MixStyleFlow 
86.16, 

66.99 

88.16, 

75.64 

90.58, 

75.74 

87.17, 

74.91 

86.09, 

62.97 

87.63, 

71.25 

 

Low data regime. To evaluate performance in low-data settings, we trained our model 

with 10% and 30% of the prostate dataset [15] and assessed results across different 

domains [16]. As shown in Fig. 2, MixStyleFlow consistently outperformed MaxStyle 

across most domains. With only 10% training data (Fig. 2.A), MixStyleFlow achieved 

notable gains in domain B (38.80% vs. 24.93%) and E (20.31% vs. 6.96%), demon-

strating robustness in extremely low-data scenarios. Increasing the training set to 30% 

improved both methods (Fig. 2.B), but MixStyleFlow remained superior, particularly 

in domain B (72.40% vs. 64.18%) and E (34.32% vs. 15.46%). These results highlight 

MixSty e    ’s st   g ge e   i  ti   eve   ith  i ited supe visi  . 
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  Fig. 2.   Dice score evaluation on prostate intra-domain and cross-site test sets: (A) results with 

10% training data; (B) results with 30% training data. 

5 Conclusion 

In this work, we introduced MixStyleFlow, a novel domain generalization framework 

that utilizes normalizing flows to model and perturb feature styles in a structured and 

expressive way. Unlike existing feature-space randomization techniques with limited 

and unordered perturbations, MixStyleFlow explicitly captures the distribution of do-

main feature styles, enabling controllable and diverse style augmentations. Our exper-

iments on prostate MRI and optic disc/cup segmentation in fundus images demon-

strated its superior generalizability to unseen domains. While we expect our proposed 

MixStyleFlow method will perform well with a high degree of generalizability in seg-

menting anatomical structures in various medical imaging applications, the computa-

tional overhead of normalizing flows may affect training efficiency compared with sim-

pler perturbation methods. Future work could improve efficiency with optimized flow 

architectures and extend the approach to more imaging modalities and tasks. 
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