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Abstract. Semi-supervised learning addresses the issue of limited an-
notations in medical images effectively, but its performance is often in-
adequate for complex backgrounds and challenging tasks. Multi-modal
fusion methods can significantly improve the accuracy of medical im-
age segmentation by providing complementary information. However,
they face challenges in achieving significant improvements under semi-
supervised conditions due to the challenge of effectively leveraging unla-
beled data. There is a significant need to create an effective and reliable
multi-modal learning strategy for leveraging unlabeled data in semi-
supervised segmentation. To address these issues, we propose a novel
semi-supervised multi-modal medical image segmentation approach, which
leverages complementary multi-modal information to enhance perfor-
mance with limited labeled data. Our approach employs a multi-stage
multi-modal fusion and enhancement strategy to fully utilize complemen-
tary multi-modal information, while reducing feature discrepancies and
enhancing feature sharing and alignment. Furthermore, we effectively in-
troduce contrastive mutual learning to constrain prediction consistency
across modalities, thereby facilitating the robustness of segmentation re-
sults in semi-supervised tasks. Experimental results on two multi-modal
datasets demonstrate the superior performance and robustness of the
proposed framework, establishing its valuable potential for solving medi-
cal image segmentation tasks in complex scenarios. The code is available
at: https://github.com/DongdongMeng/SMMS.

Keywords: Semi-supervised learning · Multi-modal segmentation · Con-
trastive learning.

1 Introduction

Fully supervised segmentation methods play an essential part in the field of
medical image analysis. However, their progress is impeded due to the lim-
ited availability of large, high-quality labeled training datasets. This challenge
makes semi-supervised segmentation a cost-effective alternative for training ro-
bust models with limited carefully labeled data and extensive unlabeled data

https://github.com/DongdongMeng/SMMS
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[10]. Many semi-supervised techniques have been effectively applied to medi-
cal image segmentation tasks [18]. These methods employ either self-training
or co-training strategies to enhance pseudo-labels [2,13], thereby expanding the
labeled dataset, or incorporate consistency-based mutual training to ensure con-
sistency across data [3], models [15,19], or tasks [8]. However, due to individual
differences among patients and limitations in image quality, most existing meth-
ods find it difficult to segment complex targets, particularly when dealing with
irregular lesion shapes, complex adjacent tissue structures, and edge blurring,
resulting in limited segmentation performance.

A common strategy for improving segmentation accuracy involves utilizing
multi-modal learning methods [5]. These methods can effectively leverage com-
plementary information from multiple modalities, thereby reducing prediction
uncertainty and enhancing the accuracy of clinical diagnosis and analysis [22].
However, most existing multi-modal approaches are designed for fully super-
vised tasks, failing to fully leverage the advantages of multi-modal data in semi-
supervised segmentation, resulting in a significant performance gap compared to
fully supervised methods.

Recently, a few semi-supervised multi-modal segmentation methods have suc-
cessfully demonstrated that multi-modal data can effectively mitigate the accu-
racy degradation resulting from limited labeled data. Zhang et al. [20] proposed
to apply multi-modal information in semi-supervised contrastive mutual learn-
ing. However, this approach ignores the feature discrepancies between modalities
at earlier stages and focuses solely on the explicit consistency constraints among
multi-modal prediction results, which may exacerbate these differences and even
lead to consistent yet incorrect predictions [9]. To address this challenge, Chen et
al. [1] and Zhou et al. [23] developed a cross-modal collaboration strategy for fea-
ture fusion and alignment, thereby enabling more effective feature sharing across
various modalities. However, using separate independent encoders to extract
modality-specific features may still enlarge the discrepancies between features,
leading to noticeable differences in segmentation accuracy across modalities.

To effectively reduce the feature discrepancies extracted by different encoders,
it is beneficial to perform feature fusion and alignment during the early encoding
stage. This can be effectively accomplished through multi-stage feature fusion,
where high-resolution low-level features are shared [6]. Furthermore, incorpo-
rating a modality-aware enhancement strategy enables dynamic adjustment of
the contributions from various modalities, thereby guaranteeing the efficient uti-
lization of multi-modal data [21,11]. Moreover, the consistency constraints of
predictions also promote multi-modal mutual learning processes [20]. However,
these studies fail to achieve effective multi-modal fusion and mutual learning
supervision, which are key elements essential for enhancing the accuracy of semi-
supervised segmentation.

In this paper, we propose a novel semi-supervised multi-modal medical im-
age segmentation approach. Our method achieves high accuracy for complex
segmentation targets with limited labeled data. To reduce the disparity between
modalities, we introduce a multi-stage feature fusion strategy to adequately align
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and fuse low-level visual features. Additionally, we introduce a modality-aware
feature enhancement module to emphasize important modality-specific features
while ignoring irrelevant information. Furthermore, we design a collaborative
mutual learning objective to facilitate mutual learning across different modali-
ties, ensuring the consistency and robustness of the cross-modal segmentation
results. We conducted a series of experiments on two complex tumor segmenta-
tion datasets, and the results show that the proposed method achieves remark-
able performance compared with the state-of-the-art segmentation methods in
semi-supervised tasks.

2 Methdology

The proposed framework for semi-supervised multi-modal medical image seg-
mentation is depicted in Fig.1. First, to prevent accuracy degradation caused by
limited labeled data, we adopt a multi-modal learning strategy to incorporate
finer details and enhance segmentation performance. The input multi-modal data
is initially fed into a dual-branch segmentation network for feature extraction,
followed by multi-stage feature fusion to achieve feature alignment and minimize
discrepancies. Subsequently, the features pass through the modality-aware en-
hancement module to adaptively choose effective multi-modal information and
generate enhanced feature representations. Finally, the model is trained by a
contrastive mutual learning strategy composed of supervised and unsupervised
consistency losses.
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Fig. 1. Overview of our semi-supervised multi-modal segmentation method.
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2.1 Multi-stage Multi-modal Feature Fusion and Enhancement

We denoted the multi-modal dataset Da and Db following [20,23] as:

Da
l = {(xai , yi)}Mi=1, D

a
u = {(xai )}Nj=1,

Db
l = {(xbi , yi)}Mi=1, D

b
u = {(xbi )}Nj=1,

(1)

where Dl and Du denoted the labeled and unlabeled datasets. The xa, xb
∈ RH×W×D are input image modalities with the size of H × W × D, and
yi ∈ RC×H×W×D is the ground truth with C classes. The M and N denote the
number of labeled and unlabeled samples, and M ≪ N . Our semi-supervised
segmentation framework adopts an end-to-end design, taking two different im-
age modalities as input, with the same annotation in the training stage, and
obtaining their prediction results at the output of the network simultaneously.
We use F a = {fas }4s=1 and F b = {f bs}4s=1 represent the low-level visual features
of the encoder for each modality at different stages, respectively. To fully inte-
grate the two modalities and reduce the differences between them, we introduce
a multi-modal fusion strategy that captures and aligns multi-modal features
F ab = {fabs }4s=1 at four encoding stages, and then transmits them to the next
stage of each encoder:

fabs = Fsigmoid(Fconv2(Fconv1(Fcat(f
a
s , f

b
s )))), (2)

where Fsigmoid denotes the sigmoid activation, Fconv1 and Fconv2 represent two
3×3×3 convolutional layers with padding of 1 and stride of 1, followed by PReLU
activation and batch normalization, Fcat represents the concatenation operation.

After the multi-stage feature fusion process, which aligns the features of dif-
ferent modalities and gradually enhances semantic information. We introduce a
novel modality-aware enhancement module to adaptively adjust the weights of
various modalities, thereby enhancing the importance of multi-modal features.
Attention mechanisms have been proven to effectively enhance feature represen-
tation and improve model robustness [21,4], which also applies to our method.
We employ multiple convolutional layers with different receptive fields to model
both local and global information. By learning the channel-wise dependencies,
we weigh the fused features to enhance crucial feature representations and sup-
press redundant information. The modality-aware attention weight for one of
the modalities, as illustrated in Fig.1, is indirectly optimized by updating the
learnable parameters defined in the following equation:

W a = Fsoftmax(Ffc(Fgap(ψ1(F
a) + ψ2(F

a)))), (3)

where Fsoftmax denotes the softmax function, Ffc represents the fully-connected
layer, Fgap represents the global average pooling operation, and ψ1 and ψ2 map
the input feature from RH×W×D to a transformed space RH′×W ′×D′

through a
sequence of convolution, batch normalization, and ReLU activations. Similarly,
the same weight learning process is applied to the other modality. Subsequently,
the emphasized features F a and F b will pass through the decoder path to gen-
erate the final output.
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2.2 Multi-modal Contrastive Mutual Learning

Contrastive learning can constrain neural networks to produce consistent seg-
mentation results, effectively alleviating the accuracy degradation caused by
limited labeled data [20]. This method has been proven effective in multiple
semi-supervised segmentation tasks and is also applicable to our scenario [10].
We define the segmentation networks fϕ(·) and gϕ(·) for each respective modal-
ity. We first apply a supervised loss to constrain the predictions, exclusively
targeting the labeled data with the ground truth:

min
fϕ,gϕ

Lsup(fϕ, gϕ) = Exa,xb,y[LCE(fϕ(x
a), gϕ(x

b), y) + LDICE(fϕ(x
a), gϕ(x

b), y)],

(4)
where LCE and LDICE represent cross-entropy loss and dice coefficient loss
function. In addition, to further obtain high-quality segmentation results, we
introduce the contrastive mutual learning loss to constrain cross-modal consis-
tency for unlabeled data. Given the distinct attributes of features from different
modalities, the prediction results produced by the fϕ and gϕ networks are dif-
ferent, enabling the generation of respective pseudo-labels:

pla = fϕ(x
a), plb = gϕ(x

b), (5)

Then, the contrastive mutual learning across modalities is defined as:

min
fϕ,gϕ

Lunsup(fϕ, gϕ) = Exa,xb [∥fϕ(xa)− plb∥2 + ∥gϕ(xb)− pla∥2]. (6)

Significantly, to prevent the model from overfitting to self-generated pseudo-
labels and avoid erroneous convergence, gradient back-propagation is not per-
formed between pla and fϕ(x

a), nor between plb and gϕ(x
b). Overall, the to-

tal learning strategy for training the semi-supervised multi-modal segmentation
model is summarized as Ltotal = Lsup(fϕ, gϕ) +αLunsup(fϕ, gϕ), where α repre-
sents the constraint weight between modalities.

3 Experiments and Results

3.1 Experimental Details

We evaluated our method using two types of multi-modal tumor datasets: the
publicly accessible BraTS 2019 Challenge dataset and a private nasopharyngeal
carcinoma (NPC) dataset.

BraTS 2019 The dataset [12] contains 335 multi-modal MRI scans of brain
tumor patients with four modalities: FLAIR, T1, T1ce, and T2. The MRI scans
are 155 × 240 × 240, with the pixel size of 1.0 mm3. In our study, we investigate
the semi-supervised segmentation of whole tumors using T1ce and T2 images.
We randomly select 250, 25, and 60 cases for training, validation, and testing,
respectively. For pre-processing, we crop zero-intensity regions and apply min-
max normalization to each scan.
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NPC Dataset The dataset contains 161 patients who received radiotherapy
treatment at a Cancer Hospital. The CT images were reconstructed using a ma-
trix size of 512 × 512, thickness of 3.0 mm, and pixel size of 1.27 × 1.27 mm2.
The MR T2 images were reconstructed using a matrix size of 384 × 384, thick-
ness of 3.0 mm, and pixel size of 1.30 × 1.30 mm2. The manual segmentation
of NPC was contoured by a radiation oncologist and verified by an experienced
oncologist. In our study, we randomly selected 112, 17, and 32 cases for train-
ing, validation, and testing, respectively. For pre-processing, we rigidly register
CT and MR T2 images, convert CT intensities to Hounsfield units (HU), and
normalize CT images using window width/level. MR T2 images are normalized
with the min-max method.

Implementation Details The model was implemented with the PyTorch frame-
work on a NVIDIA A6000 GPU. All models were trained from scratch with the
same experimental settings. The training used the SGD optimizer with an initial
learning rate of 1 × 10−2, a batch size of 4, a maximum of 60k iterations, and
a dropout rate of 0.5. The Hyper-parameter α is set to 1.0. In the training pro-
cedure, the input images were randomly cropped to a 3D volume with sizes of
112×112×96 for the NPC dataset and 96×96×96 for the BraTS2019 dataset.
To formally assess the segmentation performance, we utilize two extensively rec-
ognized metrics: the Dice Coefficient (DSC) and the Average Surface Distance
(ASD) for quantitative evaluation.

3.2 Results

Comparison with State-of-the-art Methods We first compared our method
with five semi-supervised learning approaches, such as mean teacher (MT) [15],
interpolation consistency training (ICT) [16], entropy minimization (EM) [17],
uncertainty rectified pyramid consistency (URPC) [10] and mutual learning with
reliable pseudo label (MLRPL) [14]. Furthermore, we compared our method
with semi-supervised multi-modal learning approaches, such as multi-modal con-
trastive mutual learning (MMCML) [20] and cross-modality collaboration (CMC)
[23]. For fair comparison, for single-modal semi-supervised segmentation meth-
ods, we concatenate multi-modal images along the channel dimension prior to
inputting them into the segmentation model.

Table 1 presents the results of our model and other semi-supervised methods
for tumor segmentation in terms of DSC and ASD metrics. The results demon-
strate that our method outperforms the comparison methods in both multi-
modal MR images and multi-modal CT-MR images, achieving high-accuracy
segmentation results with both 5% and 10% labeled data ratios. Due to the
highly variable spatial location distribution, irregular shapes and edges, as well
as the low contrast between the tumor and the background, tumor segmentation
is considered much more challenging than organ segmentation. The limited la-
beled data further complicates the task of tumor segmentation, thereby affecting
clinical diagnosis and treatment evaluation. Our approach exploits multi-modal
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information and reduces feature discrepancies through effective multi-stage fea-
ture fusion and enhancement, whereas existing methods typically rely on con-
sistency constraints applied to prediction results [20] or bottleneck features [23].
Moreover, our contrastive mutual learning loss helps reduce overfitting and er-
ror accumulation during training. As a result, our method overcomes these chal-
lenges and achieves the highest DSC scores for both brain tumor and NPC tumor
segmentation, demonstrating its effectiveness in complex scenarios. Fig. 2 visu-
alizes the results, demonstrating that our method closely aligns with the ground
truth. It can accurately segment brain tumors with complex shapes and capture
more edge details. Moreover, our method excels in identifying and segmenting
dispersed NPC tumors, particularly outperforming other approaches when us-
ing only 5% labeled data. A DSC score above 80% is often used as a practical
benchmark for whole tumor segmentation in clinical practice [12], while a 3
mm margin of error is widely accepted as sufficient for head and neck radio-
therapy [7]. Our semi-supervised method achieves segmentation accuracy within
this clinically acceptable range. Therefore, our method successfully models the
spatial distributions of pathological structures and is able to fully utilize consis-
tent multi-modal information, ultimately achieving high-accuracy segmentation
results in complex scenarios.

GT Ours URPC CMC

1
0
%

5
%

GT Ours URPC CMC

1
0
%

5
%

49

Fig. 2. Qualitative comparison between our method and SOTA semi-supervised meth-
ods on the BraTS 2019 and NPC datasets. The first row used 10% labeled data, and
the second row used 5% labeled data.

Ablation Study We conduct ablation studies on the multi-scale multi-modal
fusion (MMF), modality-aware enhancement (MAE), and multi-modal contrastive
mutual learning (MCML) components of our network, assessing their impact on
performance. Initially, we establish a baseline network without these compo-
nents. Then, we incrementally integrate each of the three key components into
the baseline network to systematically evaluate their individual contributions.
Table 2 presents the quantitative evaluation results of our ablation study. The
results demonstrate that these three components can effectively enhance seg-
mentation accuracy. Specifically, the MMF strategy promotes feature fusion and
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Table 1. Quantitative comparison of our method with other state-of-the-art (SOTA)
methods on the BraTS 2019 and NPC datasets using 5% and 10% labeled data.

Labeled (%) Method BraTS 2019 Dataset NPC Dataset
DSC (%) ↑ ASD (mm) ↓ DSC (%) ↑ ASD (mm) ↓

5

MT [15] 82.59±10.09 3.11±3.96 67.59±8.56 3.13±2.59
ICT [16] 79.24±12.14 3.10±3.44 68.27±8.43 2.45±1.38
EM [17] 81.38±10.58 3.76±4.55 68.31±9.11 2.72±2.02
URPC [10] 83.14±8.93 3.19±3.70 69.03±8.57 2.29±1.69
MLRPL [14] 81.01±12.47 2.52±3.48 60.05±18.18 4.70±10.00
MMCML [20] 75.83±17.53 8.39±9.36 52.54±8.54 7.47±4.11
CMC [23] 80.71±7.70 2.80±4.68 67.90±8.26 2.42±1.39
Ours 85.16±7.1085.16±7.1085.16±7.10 2.38±2.832.38±2.832.38±2.83 69.33±9.1669.33±9.1669.33±9.16 2.19±1.452.19±1.452.19±1.45

10

MT [15] 84.02±8.66 3.45±3.96 70.73±6.47 1.80±0.84
ICT [16] 84.16±8.58 3.08±3.44 71.48±6.40 2.17±2.33
EM [17] 83.84±9.42 3.21±3.76 71.30±7.12 1.73±0.841.73±0.841.73±0.84
URPC [10] 84.82±9.35 2.33±2.57 71.47±7.64 1.88±0.99
MLRPL [14] 82.68±13.69 2.52±2.87 70.81±8.07 2.53±1.61
MMCML [20] 79.97±13.81 5.56±5.21 53.61±8.69 6.04±3.18
CMC [23] 83.27±7.94 2.29±3.07 70.26±7.00 2.11±1.03
Ours 85.82±7.9785.82±7.9785.82±7.97 2.19±2.732.19±2.732.19±2.73 72.67±7.5672.67±7.5672.67±7.56 1.74±0.89

100 FullySup 88.35±6.3 1.48±1.53 77.03±6.35 1.53±0.98

alignment in the early encoding stage, thereby reducing the discrepancies be-
tween T1ce and T2 modalities and achieving an absolute improvement in the
dual-branch segmentation network. Notably, the branch of T1ce scans shows a
greater increase, achieving a 13.5% improvement in DSC score, because it bene-
fits significantly from shared features with the T2 branch. The MAE and MCML
strategies highlight the modality-aware features and cross-modal mutual learn-
ing, respectively, thereby further improving the segmentation accuracy. Specifi-
cally, these strategies improve the DSC for the T1ce modality by 13.5%, 1.9%,
and 2.0%, respectively, and for the T2 modality by 3.7%, 0.8%, and 1.5%. There-
fore, by combining these three components within our semi-supervised frame-
work, we achieve the best performance in complex tumor segmentation with
limited labeled data.

Table 2. Ablation study of our method on the BraTS dataset using 5% labeled data.

Method DSC (%) ↑ ASD (mm) ↓
Baseline MMF MAE MCML T1ce T2 T1ce T2
✓ × × × 68.44±14.46 79.28±10.82 4.28±3.07 2.93±2.73
✓ ✓ × × 81.94±10.48 82.98±9.64 3.10±3.69 3.21±3.87
✓ ✓ ✓ × 83.84±8.74 83.74±8.63 3.66±4.25 3.91±4.44
✓ ✓ × ✓ 83.96±8.02 84.43±7.56 2.62±3.54 2.70±3.53
✓ ✓ ✓ ✓ 85.16±7.10 84.95±7.25 2.38±2.83 2.67±3.09
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4 Conclusion

In this paper, we propose a novel approach for semi-supervised multi-modal med-
ical image segmentation. We introduce a multi-stage multi-modal feature fusion
and enhancement strategy to promote feature sharing and reduce feature dis-
crepancies among modalities. Additionally, this strategy emphasizes important
modality-aware features. Furthermore, we introduce multi-modal contrastive
mutual learning to achieve cross-modal consistency across different modalities.
Extensive experimental results on the BraTS and NPC datasets demonstrate
that we outperform the state-of-the-art approaches and achieve highly accurate
segmentation performance in complex situations. Future work will aim to extend
and evaluate the approach on more challenging medical image segmentation tasks
and across diverse modality combinations.
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