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Abstract. The multimodal model has shown superior potential for ac-
curate Alzheimer’s disease (AD) diagnosis; however, its reliance on com-
plete modalities limits its use in a clinical setting. This study proposes a
novel Anatomical Graph-based Multilevel Distillation (AGMD) frame-
work that effectively transfers multimodal knowledge using layered mod-
eling. Specifically, we develop a hierarchical distillation framework with
three dedicated branches to explicitly capture the features of AD from
multiple levels (local structural details, regional connectivity patterns,
and global semantic information) to achieve complete knowledge transfer.
Moreover, we introduce anatomical constraints to model the brain adja-
cent connection patterns to help better learn the relationships between
key ROls, particularly in disease-relevant regions, e.g., the hippocampus.
The prediction entropy as regularization is introduced to refine instance-
level knowledge, comprehensively alleviating the negative impact of the
teacher’s noisy information. Extensive experiments on the ADNI dataset
demonstrate that AGMD achieves the best classification accuracy, with
an improvement of 3.7% over the state-of-the-art methods, while signifi-
cantly reducing the performance gap between teacher and student mod-
els. The code is available at https://github.com /LiuFei-AHU/AGMD.
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1 Introduction

Alzheimer’s disease (AD), the most prevalent neurodegenerative disorder affect-
ing more than 50 million people worldwide [8], is characterized by progressive
cognitive decline and irreversible brain atrophy. Early diagnosis and progression
prediction (e.g., distinguishing progressive mild cognitive impairment (pMCI)
from stable MCI (sMCI)) are critical for timely intervention [22]. Although
multimodal neuroimaging combining Magnetic Resonance Imaging (MRI) and
Positron Emission Tomography (PET) achieves superior diagnostic performance
[I5J16], insufficient data is a critical challenge in clinical practice: the frequent
unavailability of PET due to cost constraints or safety concerns [I7]. Models
relying solely on MRI suffer severe performance degradation because they fail to
capture disease-related metabolic patterns.

Knowledge distillation (KD) offers a potential solution by transferring knowl-
edge from a multimodal teacher (e.g., trained with MRI and PET) to a student
model using only MRI [7]. Existing KD methods focus on aligning logits or fea-
tures between models. Logit distillation [9] is simple but transfers insufficient
information. Thus, it has limited application, particularly for complex tasks
such as the early diagnosis of AD. Feature distillation [T4J5I0/T3I24] improves
flexibility by distilling multiscale intermediate or global features but struggles
to filter task-irrelevant noise (e.g., non-disease-related anatomical variations).
Attention-based distillation [25J2002312] partially addresses this by emphasiz-
ing discriminative regions. In addition, adversarial and contrastive distillation
strategies [2II1] were also proposed to improve the robustness of the student
model. Although existing distillation methods achieve promising results in nat-
ural images, their direct application to AD diagnosis remains suboptimal due
to two issues: (1) Ignoring hierarchical pathology: AD manifests multilevel
interactions, such as local tissue atrophy (e.g., hippocampus), interrupted inter-
regional connectivity, and global dysfunction [2]. Single-level knowledge mod-
eling [T4B2520TOIT3I2324] fails to capture the hierarchical pathology of AD,
as evidenced by recent neuropathological study [19]. (2) Anatomically im-
plausible representations: Graph-based methods [I1I4/26] capture brain con-
nectivity but rely on simple graph construction (e.g., correlation-based edges),
neglecting anatomical priors (e.g., white matter tracts between ROIs). Without
explicit anatomical constraints, it is challenging to construct a complete and
rational pathological distribution network, and the learned features may lack
biological interpretability.

To address these limitations, we propose a novel Anatomical Graph-based
Multilevel Distillation (AGMD) framework, specifically designed for the di-
agnosis of AD. Our main contributions include the following: (1) Hierarchi-
cal pathology modeling: Our AGMD explicitly encodes AD pathology at
three levels: local (3D CNN for ROI atrophy), regional (graph convolution for
inter-ROIs connectivity), and global (transformer for the semantic context of
the brain) inspired by neuropathological studies [I9]. (2) Anatomically con-
strained graph learning: To the best of our knowledge, we are the first to
construct anatomically guided graphs using structural connectivity derived from



AD-aware brain regions with their adjacent neighbors, ensuring that the edges
reflect biologically plausible pathways between disease-relevant ROIs (e.g., hip-
pocampus). Furthermore, we introduce an uncertainty-aware gating mechanism
to dynamically adjust instance-level distillation based on the teacher model’s
prediction entropy estimates, prioritizing reliable teacher predictions.

Experiments on the ADNI dataset demonstrate that our AGMD achieves
state-of-the-art (SOTA) accuracy (75.9% on AD/pMCI/sMCI/NC classifica-
tion), outperforming previous distillation methods by 3.7% and significantly re-
ducing the teacher-student performance gap with ablation studies validating the
necessity of each component.

2 Methodology

2.1 Proposed Framework

We propose a novel Anatomical Graph-based Multilevel Distillation (AGMD)
framework to transfer multimodal knowledge from a teacher model (trained on
MRI and PET) to a student model (using MRI only). Fig. [I]illustrates the overall
framework. In particular, our AGMD includes three main components: 1) Cross-
Modal Attentive Fusion Transformer (CMT) for teacher model’s shallow
features fusion, 2) Anatomical-guided graph learning for brain connectivity
modeling, and 3) Uncertainty-Aware Gating (UAG) for dynamic knowledge
refinement.

The teacher model takes MRI (Xygr € RI*XWXP) and PET (Xpgr €
RIXWXDY as inputs, while the student model takes only MRI. Both models
use 3D convolutional encoders to extract multiscale features: {Fl iz, Fhpp S,
where F! € REOXHxWixDi g the feature map at layer [, K is the total number
of layers, while C} is the channel number. For the teacher model, each layer of
features of Xyrr and Xprr are fused as F, 4 in the CMT, then the last two
layers’ features (Ffffsgj, Ff{fsed) are input into the Anatomical-guided Graph
Learning to construct the brain graphs to model brain connectivity. Finally, the
classifier will output the predicted disease label y on the fused brain graphs.
For the student model, it has the same workflow but without the CMT mod-
ule. We evaluate the teacher model’s prediction entropy in UAG to refine the
knowledge when training the student model.

2.2 Cross-Modal Attentive Fusion Transformer (CMT)

For each layer of MRI and PET features of the teacher model, we first calculate
their joint channel attention: Cagn = Attention(Fli,IRI ® Flpr), then FI(,[RI =
Cattn © Flry- Next, cross-attention is utilized to capture associations across
MRI and PET. Specifically, for layer [, the MRI and PET features are fused via:

l T
Fflused = COHV(AttIll ® Vl + Fli/IRI)7 Attnl = Softmax (%) ) (]—)
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Fig.1: (a) The architecture of the proposed AGMD: local structural details
extracted by a 3D CNN Encoder with a Cross-Modal Attentive Fusion
Transformer (CMT), brain connectivity patterns, and global semantic con-
text through the Anatomical-guided Graph Learning, while Uncertainty-
Aware Gating (UAG) dynamically refines instance-level knowledge. (b) The
semantic and anatomical graphs are constructed based on the brain template
and anatomical constraints.

where Q! = Conv(Fg;), K!' = Conv(Fbgr), V! = Conv(Fbgr) are query, key,
and value matrices for cross-modal interaction, Attn' is the attention weights
highlighting PET-informed regions, and F},__,is the fused features retaining MRI
structural details and focusing on relevant functional areas.

We then transfer the learned cross-modal associations to the student model,
alleviating the impact of missing modality and improving robustness. To achieve
this, we align student features Fg, o With F .q Via:

K
Lshallow = Z Qp - HFflused - FSltudentH%’ (2)
=1

where o is a layer-wise weight used to constrain the learning of the student
model.



2.3 Anatomical-guided Graph Learning

Semantic Graph Construction. Following [3], the ROI features are extracted
from the encoder guided by the Automated Anatomical Labeling (AAL) tem-
plate [I8] for the last two layers of the encoder. The AAL template is downsam-
pled to match the dimension of F! € RH' xW'xD* Then, we construct the brain
semantic graph G = (V, &), where nodes V and edges & represent brain ROIs
and regional connectivity, respectively. Cosine similarity is computed between
node features, and edges are established using KNN (in our experiments, the
k = /Ny, Ny is the number of nodes):

h! - ht
Cosine(v;, v;) = ————, (3)
S
. 1 if v; € top-k neighbors of v,
Aéemantic (Za.]) = ’ . (4)
0 otherwise,

where Cosine(v;, v;) calculates the feature similarity between nodes (v;,v;) € V,
h! € RY is the feature of i*" node, and AL . . (i,j) = 1 represents there is an
edge between nodes (v;, v;).

Anatomical Graph Construction. To create a graph structure that better
reflects the characteristics of the brain network, we introduce anatomical con-
straints that can effectively learn the relationships between key ROIs. According
to the constructed semantic graph, we select the top M disease-sensitive nodes
(e.g., hippocampus) based on the contributions to AD, where M is the number
of key ROIs and is set to 10 in our experiment. Then, we screen neighbors for
disease-sensitive nodes to construct the spatially adjacent graph. Specifically,
for each node v;, we identify adjacent ROIs based on the AAL template and
the adjacency of brain regions, and then edges between these adjacent ROIs are
added to the dynamic graph:

1 if adjacent(v;,v;) = True,

()

Al tomical (i, 5) =
anatomlcal( .7) {0 otherwise.

Graph Fusion and Learning. The semantic and anatomical graphs are fused
into a complete brain graph to encode semantic and anatomical connections in
each layer: AL ., = AL . + Al . a - Then, we have brain graphs in
multiple scales, better reflecting the complex connectivity patterns of the brain
network, which can be learned using GCNs:

H'"' = ReLU (A}

u

sedHlWl) ’ (6>

where H! is the node feature matrix at layer [, and W' € R€*Ci+1 ig a learnable
weight matrix. For each layer, the teacher and student’s graph representations



are aligned via:

£graph = Z Bl : HH!I‘eacher - HlStudentH%W (7>
l

where (; is the layer-wise weight used to constrain the learning of the student
model.

After that, these multiscale graphs are fused via a Graph Transformer to
model cross-graph interactions, using multi-head attention to capture global de-
pendencies: G = GraphTransformer (Hl’l,Hl). Then, we use Lglobal to mini-
mize the cosine distance of global brain networks between the teacher and stu-
dent models:

GTeacher ' GStudent (8)

Lglobal = 1 — .
gons ” GTeacher H || GStudent ”

2.4 Uncertainty-Aware Gating (UAG)

The gating mechanism can adaptively prioritize reliable knowledge transfer dur-
ing distillation. We dynamically adjust distillation weights to refine knowledge
transfer according to the teacher’s uncertainty. Specifically, we compute the
entropy-based confidence weight w from the teacher’s Softmax probabilities p:

Nelass
- cl c
w = 1— Zc:l Pclogp (9)

IOg Nclass

where N¢ags 18 the number of classification groups.

Then, the confidence weight is applied to the distillation losses. The total
loss combines shallow, regional, and global distillation losses with uncertainty
weights:

Liotal = Liask + W - Z Ly, (10)
l

where Liak is the cross-entropy loss and [ € {shallow, graph, global}.

3 Experiments and Results

Dataset and Preprocessing. We collected multi-center 3D neuroimaging data
(MRI and PET) from the ADNI1-2 databases, comprising 269 subjects from four
groups: AD, pMCI, sMCI, and NC (89, 38, 64, and 78, respectively). We chose
1.5T / 3T Tl-weighted MRI and 18F-FDG PET for this study. Following the
common practice outlined in [6], the MRI images were processed using a stan-
dard pipeline, which mainly included tissue segmentation, normalization to the
MNI152 space, and smoothing. The paired MRI and PET images are spatially
aligned using the SPM12 tools, and the final data is resampled to 113 x 113 x 137.



Experimental Setup. We evaluated our model on the AD/pMCI/sMCI/NC
classification task. Evaluation metrics include accuracy (ACC), specificity (SPE),
sensitivity (SEN), AUC, and weighted-F1 to address class imbalance. The data
is divided into three sets: training, validation, and testing (7:1:2). We train the
model on a 3090 NVIDIA GPU for 150 epochs with Adam optimizer, and the
learning rate is set to le-5. We compared the results of our model with those
of various state-of-the-art methods to verify its superior performance (see Table
for details). Among them, "Baseline" represents the traditional convolutional
model using MRI and PET, "Graph Transformer" is a graph learning-based
method [4] using MRI and PET, "Teacher (Ours)" represents the multimodal
teacher model, and "AGMD (Ours w/o KD)" is the model using the same ar-
chitecture as the student model without distillation. We further compared with
existing distillation methods, such as traditional logit distillation (KD) [9], three
feature distillation methods: shallow feature, global feature and cross-layer dis-
tillation (FD [12], GFD [14], and CFD [5l24]), one attention distillation (AFD)
[23], one adversarial contrastive distillation (ACD) [21I], and a graph distillation
(GD) [1I]. We ran all the methods under the same conditions for a fair com-

parison. In addition, we conducted ablation experiments to prove the validity of
each module of our AGMD, as shown in Fig. 2|

Table 1: Performance comparison on ADNI dataset

Method Modality ACCt SPE{1 SENtT AUCtT F1t

Baseline MRI+PET 0.6111 0.7937 0.6111 0.7008 0.5044
Graph Transformer [4] MRI+PET 0.7407 0.8794 0.7407 0.8406 0.7217
Teacher (Ours) MRI+PET 0.7778 0.8917 0.7778 0.8770 0.7851
Logit [9] MRI 0.6481 0.8610 0.6481 0.7720 0.6595
Shallow Features|12] MRI 0.6481 0.8700 0.6481 0.7120 0.6571
Global Features [14] MRI 0.6296 0.8180 0.6296 0.7447 0.6011
Attentive Features [23] MRI 0.6481 0.8179 0.6481 0.7081 0.6350
Cross-layer Features [5124] MRI 0.6296 0.8451 0.6296 0.7956 0.6239
Adversarial Contrastive [21] MRI 0.7222 0.8805 0.7222 0.8610 0.7242
Brain Subgraphs [11] MRI 0.7037 0.8886 0.7037 0.8244 0.7225
AGMD (Ours w/o KD) MRI 0.6481 0.8146 0.6481 0.7376 0.5293
AGMD (Ours) MRI 0.7593 0.9014 0.7593 0.8760 0.7560

3.1 The performance valuation on the AD classification task

Table [I] compares the performance of the teacher model, the student model,
and various distillation methods. The performance upper bound is given by
our teacher model, which achieved the highest ACC (0.7778) and weighted F1
(0.7851), validating its ability to extract intricate pathological patterns related



to AD. The student model without distillation obtains lower performance (ACC
= 0.6481, F1 = 0.5293), indicating that it fails to capture complete disease-
specific features using only MRI. In addition, the baseline model achieves the
worst performance, demonstrating its low ability to capture complex brain con-
nections with only CNNs. The proposed AGMD achieves ACC (0.7593) and F1
(0.756) that are close to the teacher model’s performance, and significantly out-
perform other distillation approaches (e.g., logit distillation [9]: F1 = 0.6595).
Compared with traditional methods, the graph models [11/4] and the adversarial
and contrastive distillation method [21] obtain better classification results, indi-
cating their better ability for AD diagnosis, particularly the graph-based models
[114] show superior performance than other methods because of their ability
in learning brain connections. However, our AGMD achieves the highest SPE
(0.9014) and AUC (0.876), demonstrating its ability to distinguish challenging
classes while minimizing false positives, which is critical for early screening of
AD.
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Fig. 2: Ablation study of AGMD components.

3.2 Ablation Study

Fig. 2| validates the necessity of each component. From the ablation experiment
of the teacher model (Fig. 2a]), its classification result (blue) decreased signif-
icantly without the CMT module, demonstrating that cross-modal fusion can
effectively combine the advantages of two modalities. We evaluated the impact
of the graph learning module, showing that the teacher model’s classification
performance (orange) decreased slightly when removing the anatomical graph.
This suggests that only the semantic graph may not effectively learn brain con-
nectivity; our AGMD, however, achieves the best performance (yellow) since
it can capture key regional relationships. For the student model (Fig. , the
main observations are as follows: 1) our AGMD (green) achieves the best per-
formance with complete distillation modules, suggesting it effectively learns dis-
ease features; 2) Removing graph distillation (orange) causes a 9.7% ACC drop
(0.6853 vs. 0.7593), demonstrating that it cannot effectively learn the complex



AD-pathology distribution pattern without regional connectivity modeling. 3)
Disabling the Uncertainty-Aware Gating (UAG) module (blue) reduces the
overall performance, explaining the necessity to refine the teacher’s knowledge
in the distillation process. 4) Only using feature and logit distillation (yellow)
obtains the worst classification results, suggesting that graph distillation can
transfer complex knowledge about brain connections.

4 Conclusion

This paper proposes a novel Anatomical Graph-based Multilevel Distillation
(AGMD) framework for diagnosing AD with missing modalities. AGMD achieves
SOTA results on AD/pMCI/sMCI/NC classification task, with an accuracy of
0.7593 and a specificity of 0.9014, by integrating brain network topology mod-
eling and uncertainty-aware knowledge transfer. Extensive studies confirm the
necessity of multilevel and graph distillation with anatomical constraints, which
provides complete and rational pathology distribution information. The pro-
posed framework provides a solution for cross-modal knowledge transfer in dis-
ease diagnosis with missing modality, with potential applications in other med-
ical vision tasks requiring robust unimodal inference. In the future, we plan to
explore the relationship between brain connectivity patterns and disease pro-
gression, thus contributing to a deeper understanding of the development of
Alzheimer’s disease.
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