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Abstract. Non-small cell lung cancer (NSCLC) is one of the leading
causes of cancer-related mortality, with lymph node metastasis serving
as a critical factor in both prognosis and treatment decisions. Lymph
node station (LNS) dissection is an essential procedure in the manage-
ment of NSCLC patients; however, over-dissection may expose patients
to unnecessary risks, while under-dissection could lead to undetected
metastases. Despite its importance, predicting the exact metastasis sta-
tus during surgery remains challenging. To address this challenge and
meet the urgent need in clinical practice, this study presents the Deep
Knowledge-infused Transformer (DKiT) model, designed to predict LNS
metastasis in previously unexamined regions by capturing the relation-
ships between LNSs. Furthermore, DKiT is augmented with clinical prior
knowledge through a multi-stage infusion mechanism during the decod-
ing phase, enhancing both model performance and interpretability. Ad-
ditionally, we developed an AI-powered intraoperative decision support
system based on DKiT, which provides real-time surgical recommenda-
tions informed by frozen pathology results. Experimental results show
that DKiT achieves an AUC score of 0.812 for LNS-level metastasis
prediction, outperforming other comparative methods. The clinical sys-
tem achieves a recall of 0.930 and precision of 0.865 in the retrospective
cohort collected from collaborating hospitals, highlighting its potential
in guiding NSCLC treatment decisions. The source code is available at
https://github.com/czifan/DKiT.

Keywords: Lymph node metastasis · Non-small cell lung cancer · Deep
learning · Intraoperative decision system.
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Fig. 1. Overview of Lymph Node Stations in NSCLC (a) and the AI-Powered Decision
Support System for Intraoperative Use (b).

1 Introduction

Non-small cell lung cancer (NSCLC) remains one of the leading causes of cancer-
related mortality worldwide [5], with lymph node (LN) metastasis playing a crit-
ical role in both prognosis [12] and treatment decisions [18]. In clinical practice,
LN dissection is a central component of NSCLC treatment [22]. However, both
excessive and inadequate dissection can have substantial consequences for pa-
tients. Over-extensive dissection may subject patients to unnecessary surgical
risks, while insufficient dissection may leave metastases undetected, potentially
leading to disease progression. To enhance the prediction of LN metastasis, clin-
ical staging methods are often supplemented with intraoperative imaging or
frozen pathology examinations to assess the metastasis status of unexamined
LNs. However, these rule-based methods often fail to capture the complex and
individualized metastatic patterns of LNSs, particularly the interrelationships
between different LNs or lymph node stations (LNSs, as defined in Figure 1(a)).

In recent years, the rapid development of deep learning techniques has opened
new avenues for addressing this challenge in the medical field [21,8,19,13]. Deep
learning models, particularly Transformer-based models, have shown consider-
able success in medical image analysis [15,9,23], clinical decision support [2,11],
and disease prediction [17,4]. The attention mechanism in Transformer models
makes them particularly effective in modeling complex relationships between
clinical objects. For instance, He et al. proposed using Transformer models to
model the metastatic relationships between source and target lesions in series of
CT images [6]; Lu et al. applied Transformer models to capture the interconnec-
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tions between different tissue regions in H&E pathology whole-slide images [14];
and several studies [20,1,7] treated longitudinal patient follow-up data from mul-
tiple time points as distinct objects, employing Transformer models to explore
the temporal dynamics of such data. These studies highlight the powerful and
robust ability of Transformer models to capture complex relationships between
clinical objects. However, there has been no exploration into the use of advanced
AI technologies, such as Transformers, to describe the metastatic relationships
between LNSs. Effectively modeling these relationships could have important
clinical implications. For example, based on intraoperative frozen pathology re-
sults, the next LNS that needs to be dissected could be real-time predicted,
minimizing unnecessary surgical interventions and improving intraoperative di-
agnostic efficiency, ultimately enhancing patient outcomes (as shown in Fig-
ure 1(b)).

Against this backdrop and the urgent need in clinical practice, we propose a
Deep Knowledge-infused Transformer model (DKiT), for predicting LNS metas-
tasis in NSCLC patients. The main contributions of this study are as follows:

1. We propose a Transformer-based framework for predicting LNS metastasis,
enabling accurate identification of high-risk LNSs based on existing metas-
tasis information within the patient.

2. We introduce a clinical knowledge infusion mechanism to markedly enhance
the model’s understanding of LNS metastasis by injecting encoded prior
knowledge through graph learning during the decoding phase.

3. We further develop an AI-powered system based on the DKiT, providing
real-time recommendations for the next LNSs to be dissected and improving
clinical decision-making.

4. We evaluate the DKiT and system by collecting a real data cohort of 919
NSCLC cases, demonstrating a 5.45% improvement in LNS metastasis pre-
diction accuracy compared to existing methods, with a recall improvement
ranging from 2.20% to 8.75% in system decision-making across various clin-
ical parameter settings, underscoring its accuracy and clinical relevance.

2 Methods

The primary objective of this study is to develop a model for predicting LNS
metastasis in NSCLC patients and to establish a clinical decision support system.
This process involves two key steps: first, constructing a metastasis prediction
model based on cross-LNS relationships, and then developing an AI-powered
decision support system utilizing the trained prediction model. As illustrated
in Figure 2, the input to the prediction model includes the current metastasis
status of LNSs. The model consists of two primary branches. The first branch
formalizes the clinical prior knowledge regarding the relationships between dif-
ferent LNSs into a graph structure, where each LNS is represented as a node and
their adjacent relationships (i.e. 1L and 2L are spatial neighbors; Figure 1(a)) are
represented as edges. A graph-based encoder is employed to extract embeddings
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Fig. 2. Architecture of the Proposed DKiT Model for LNS Metastasis Prediction.

for each LNS (denoted as G ∈ RNLNS×C). The second branch decodes informa-
tion, such as the metastasis status and location of LNSs, through embeddings
(denoted as M ∈ RNLNS×C and L ∈ RNLNS×C , respectively). These embed-
dings are then used to model the relationships between multiple LNSs using a
Transformer-based architecture. During the decoding phase, clinical knowledge
is injected through multi-stage graph-based embeddings, and a predictor fore-
casts the metastasis status of unexamined LNSs. The following sections provide
a detailed description of these modules.

2.1 Transformer-Based Prediction Architecture

The metastasis status and LNS location information are encoded and combined
into a unified representation, denoted as X = M+ L ∈ RNLNS×C . Additionally,
a "Mask" indictor (Mmask ∈ {0, 1}NLNS) is constructed, identifying LNSs that
require prediction (with a value of 1) and those that are known (with a value
of 0). For the known LNSs, their representations are organized into a matrix
Xknown = {Xi}i|Mmask,i=0, which serves as the known knowledge and input to
the Transformer-based encoder with Sencoder stages. The encoder is designed us-
ing the standard self-attention mechanism [21], where each module consists of an
attention block followed by a feed-forward network (FFN). The output of the en-
coder, denoted as Hencoder, captures the relationships between the known metas-
tasis status of LNSs. The next step involves concatenating the representations of
the unexamined LNSs (whose metastasis status needs to be predicted) with the
encoder output, denoted as H = [HT

encoder, {Xj}T
j|Mmask,j=1]

T ∈ RNLNS×C . Then,
the graph-based embeddings G are used for knowledge infusion with H during
multi-stage (Sdecoder) decoding, providing the final embeddings for the unexam-
ined LNSs, and a Multi-Layer Perceptron (MLP) is used for predictions. Dur-
ing training, the model employs a mask-and-predict strategy, using the known
metastasis data as supervisory labels to calculate binary cross-entropy loss, which
guides backpropagation and parameter optimization.
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2.2 Knowledge Infusion Mechanism

Let the hidden embeddings at the s-th stage in decoding be denoted as Hs, and
the corresponding graph embeddings as Gs. Since our method supports the in-
fusion of multiple clinical prior knowledge graphs, we define the set of knowledge
graphs as {Gs,k}k∈{1,··· ,Ngraph}. Inspired by previous studies on information in-
fusion [2,3], we treat the hidden embeddings as the primary feature and apply a
linear transformation to generate the "Query" (Qs). Similarly, each graph em-
bedding is linearly transformed to produce the "Key" and "Value" (Ks,k and
Vs,k). The knowledge infusion is performed as follows:

Ĥs = LayerNorm

Hs +

Ngraph∑
k=1

αk · A(Qs,Ks,k,Vs,k)

 , (1)

where A(Q,K,V) = SoftMax
(

QKT
√
C

)
V is implemented as cross-attention, and

αk represents a dynamic attention weight to integrate information from multi-
ple graphs, which is computed as a gated attention. Subsequently, the standard
attention module and FFN perform relational reasoning between all LNSs. Re-
peating the knowledge infusion process for Sdecoder stages completes the decoding
procedure.

2.3 AI-Powered Intraoperative Decision Support System

As shown in Figure 1(b), the process begins with the first round of LNS dissec-
tion, where frozen samples are sent to the pathology department for diagnosis.
Suppose that the metastasis status of Ninit LNSs is obtained, serving as the
initial condition for the system. The trained DKiT is then applied to predict the
metastasis statuses of the remaining NLNS−Ninit unexamined LNSs. These pre-
dictions are ranked in descending order based on the predicted metastasis scores.
The top Npred LNSs with scores exceeding a threshold τ are recommended for
further dissection. Afterward, the newly dissected LNSs are sent for intraop-
erative pathology testing, providing updated information. This newly acquired
information is integrated into the system, and the process is repeated iteratively.
This cycle continues until the surgery is completed or the model predicts that no
further LNSs with high metastasis risk remain. The execution of this iterative
procedure forms the AI-powered intraoperative decision support system, provid-
ing real-time recommendations for surgical decision-making and optimizing the
dissection strategy based on the latest available information.

3 Experiments

3.1 Experimental Settings

Dataset The data for this study were collected from our collaborating hospitals
and include systemic LNS dissection data from 919 NSCLC patients, all staged
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as N1 or N2. The patients were randomly split into training (733 patients), vali-
dation (85), and test (101) sets. Following the surgical guidelines of the National
Comprehensive Cancer Network (NCCN), each patient underwent dissection of
at least three N2 stations. For patients staged as N2, ipsilateral mediastinal LN
dissection was performed, while contralateral LNs were not dissected. Based on
the LN location, data for each patient were organized into several LNSs (details
are shown in Figure 1(a)). Labels for each LNS are encoded as 0 (no metastasis),
1 (metastasis present), or None (node not dissected).
Implementation Details We utilize Word2Vec [16] to encode metastasis in-
formation and LNS locations into embeddings. The dimensionality of all em-
beddings is C = 64, and the hidden size of FFN is 256. Nencoder is set to 4 to
ensure comprehensive encoding of known knowledge, while Ndecoder is set to 2
enable faster inference. Dropout with a probability of 0.1 is applied across all
layers. A two-layer Graph Convolutional Network [10] (GCN) is used to encode
prior knowledge. The model is implemented in PyTorch (v2.0.1) and trained on
a single A800 GPU with CUDA (v11.9) and eight 8358P CPUs. We apply the
AdamW optimizer with an initial learning rate (LR) of 1× 10−3, a weight decay
of 1× 10−4, and cyclic cosine learning rate decay, reducing the LR to 1× 10−5

every 100 epochs. The model is trained for 400 epochs with a batch size of 128.
We apply Exponential Moving Average (EMA) with a decay factor of 0.99 and
utilize early stopping based on validation performance to retain the final model
weights. The performance reported below is evaluated on the test set.
Comparison Methods We compare our model with several baseline approaches:
1) Statistical models (S-Model): These methods access the correlation between
local and overall LNS status using simple statistics (e.g., mean, mode, per-
centiles) of known LNS labels. 2) Machine learning models (ML-Model): This
category predicts LNS metastasis based on available LNS data using machine
learning algorithms (e.g., Decision Trees, SVM, Random Forests). 3) Graph-
based models with prior knowledge (G-Model): These models leverage LNS re-
lationships encoded in graph networks to predict the status of unknown LNS.
For each category, we report the best-performing model in the following.
Evaluation Metrics We assess prediction accuracy at the LNS level using
AUCLNS and evaluate clinical decision support through recall and precision.

3.2 Comparison with Other Methods

As shown in Table 1, the proposed DKiT outperforms other comparison meth-
ods both in LNS metastasis prediction and clinical metrics at the patient level.
Specifically, DKiT achieves an AUCLNS of 0.812 for LNS metastasis prediction,
representing a 5.45% relative improvement over the ML-Model and a 0.102 ab-
solute improvement over the clinically-based G-Model. In simulation settings
with varying initial clinical parameters (1/3/5 known LNSs), DKiT consistently
maintains high recall rates, improving from 0.833 to 0.930 as more initial in-
formation is provided. This high recall rate is crucial in clinical practice, as it
indicates a lower likelihood of missing metastatic LNSs, which is often associated
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Table 1. Comparison between various models. Bold indicates the best performance,
while 95% confidence interval in square brackets. ± represents the standard deviation of
metrics across patients. ↑ shows the relative improvement over the second-best method.

Metrics S-Model ML-Model G-Model DKiT(Ours) ↑ (%)
AUCLNS 0.555 [.522, .587] 0.770 [.731, .805] 0.710 [.665, .748] 0.812 [.777, .845] 5.45

Ninit = 1
Recall 0.348 ±0.455 0.723 ±0.336 0.766 ±0.314 0.833 ±0.255 8.75
Precision 0.213 ±0.287 0.551 ±0.339 0.509 ±0.273 0.597 ±0.274 8.35

Ninit = 3
Recall 0.500 ±0.432 0.809 ±0.277 0.828 ±0.273 0.854 ±0.221 3.14
Precision 0.546 ±0.444 0.708 ±0.306 0.683 ±0.286 0.744 ±0.271 5.08

Ninit = 5
Recall 0.771 ±0.353 0.904 ±0.227 0.910 ±0.204 0.930 ±0.176 2.20
Precision 0.820 ±0.337 0.807 ±0.268 0.823 ±0.258 0.865 ±0.231 5.10

with improved patient prognosis. Furthermore, DKiT achieves the highest preci-
sion across all experimental groups while maintaining high recall, demonstrating
its ability to accurately identify LNSs with a high probability of metastasis.
This ensures that unnecessary LNS dissection is minimized, reducing patient
risk. Moreover, we observe that the S-Model (based on the most frequent LNS
metastasis states) performs poorly with only one known LNS, but its perfor-
mance improves rapidly as more information becomes available. This suggests
that the metastasis state of most LNSs in patients is closely linked to global sta-
tistical patterns, highlighting the challenge of predicting finer, patient-specific
variations, where the DKiT excels. Notably, even with limited initial LNS in-
formation, DKiT maintains strong performance, suggesting its ability to model
the semantic relationships across different LNS regions and leverage inter-LNS
correlations effectively for accurate prediction.

3.3 Ablation Studies

We conducted ablation experiments to assess the impact of different clinical
prior knowledge injections on the DKiT model. We tested the model with no
prior knowledge (w/o), with single knowledge (+K1, +K2, +K3), and with all
three knowledge injected simultaneously (+K1/K2/K3). K1, K2, and K3 repre-
sent clinical knowledge graphs based on anatomic proximity, rule transfer mode,
and discovered transfer paradigms, respectively. As shown in Figure 3(a), even
without prior knowledge injection, DKiT achieved a high AUC of 0.806 for LNS
metastasis prediction. While single knowledge injections had minimal effect on
AUC, they did improve recall and precision. This is because the LNS-level pre-
diction task during model development relies on large amounts of known LNS
data to predict only one unknown LNS. However, in real-world applications, the
model often needs to infer future LNS based on only a small amount of known
LNSs. Thus, the injection of prior knowledge improves the model’s robustness
when operating with limited known information. The simultaneous injection of
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Fig. 3. Ablation study results (a) and correlation analysis of LNSs (b).

all three knowledge resulted in the best overall performance, except for precision,
where +K1 performed similarly. This demonstrates DKiT’s ability to integrate
multiple knowledge sources, and its scalability for future knowledge expansions,
such as incorporating new knowledge (K4) into the model.

3.4 LNS Correlation Analysis

We analyze the correlation between LNSs using cosine similarity of their loca-
tion embeddings L. As shown in Figure 3(b), nodes (LNSs) "3A", "2R", "3P",
"9", "12", and "5" form a regional metastasis pathway (red dotted box), indi-
cating that tumors in these areas are likely to spread through these connected
LNSs. This grouping reflects the anatomical and functional proximity of these
nodes, which facilitates metastatic progression. "3A", in particular, plays a piv-
otal role in NSCLC metastasis. Located near major airways and blood vessels,
"3A" serves as a critical junction for early tumor spread. Its high connectivity
with adjacent nodes highlights its importance as a key site for metastasis, es-
pecially in right-sided NSCLC [24]. In conclusion, embedding models combined
with prior knowledge enhance DKiT’s understanding of LNS correlations, im-
proving interpretability in the metastasis prediction process.

4 Conclusion

In this study, we introduced the Deep Knowledge-infused Transformer (DKiT)
model for predicting LNS metastasis in NSCLC patients. By integrating clini-
cal prior knowledge during the decoding phase, DKiT effectively captures the
complex relationships between LNSs and accurately predicts the metastasis sta-
tus of unexamined LNSs. We further developed an AI-powered intraoperative
decision support system that provides real-time recommendations to guide sur-
gical decisions. Retrospective validation of the system demonstrated its ability
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to enhance surgical decision-making and predict metastasis in previously unex-
amined LNs. This work reveals the potential of using Transformer models to
model LNS metastasis relationships and the clinical applicability of the model.
We acknowledge that the current evaluation was based on a single-center retro-
spective cohort, which may limit the generalizability of our findings. In future
research, we plan to transform this system into software and conduct prospective
as well as multi-center studies to further validate its clinical utility. Moreover,
we recognize the importance of explicitly incorporating uncertainties and hypo-
thetical LNS statues in future versions of the model to better inform surgical
decisions when facing ambiguous or unknown lymph node information.
Disclosure of Interests The authors have no competing interests to declare
that are relevant to the content of this article.
Acknowledgements This work was supported by the Municipal Natural Sci-
ence Foundation (kq2402002) and the National Natural Science Foundation of
China (12090022). The anatomical illustrations in Figs. 1 and 2 were adapted
from materials provided by Biovisart (https://biovisart.com.cn).

References

1. Chen, Q., Fu, Q., Bai, H., Hong, Y.: Longformer: longitudinal transformer for
alzheimer’s disease classification with structural mris. In: Proceedings of the
IEEE/CVF winter conference on applications of computer vision (CVPR). pp.
3575–3584 (2024)

2. Chen, Z., Chen, Y., Sun, Y., Tang, L., Zhang, L., Hu, Y., He, M., Li, Z., Cheng,
S., Yuan, J., et al.: Predicting gastric cancer response to anti-her2 therapy or anti-
her2 combined immunotherapy based on multi-modal data. Signal Transduction
and Targeted Therapy 9(1), 222 (2024)

3. Chen, Z., Zhao, J., Yu, H., Zhang, Y., Zhang, L.: Multi-scale context-guided lumbar
spine disease identification with coarse-to-fine localization and classification. In:
2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI). pp. 1–5.
IEEE (2022)

4. Dong, H., Yao, J., Tang, Y., Yuan, M., Xia, Y., Zhou, J., Lu, H., Zhou, J., Dong,
B., Lu, L., et al.: Improved prognostic prediction of pancreatic cancer using multi-
phase ct by integrating neural distance and texture-aware transformer. In: Inter-
national Conference on Medical Image Computing and Computer-Assisted Inter-
vention. pp. 241–251. Springer (2023)

5. Gridelli, C., Rossi, A., Carbone, D.P., Guarize, J., Karachaliou, N., Mok, T., Pe-
trella, F., Spaggiari, L., Rosell, R.: Non-small-cell lung cancer. Nature reviews
Disease primers 1(1), 1–16 (2015)

6. He, M., Chen, Z.f., Liu, S., Chen, Y., Zhang, H., Zhang, L., Zhao, J., Yang, J.,
Zhang, X.t., Shen, L., et al.: Deep learning model based on multi-lesion and time
series ct images for predicting the benefits from anti-her2 targeted therapy in stage
iv gastric cancer. Insights into Imaging 15(1), 59 (2024)

7. Holste, G., Lin, M., Zhou, R., Wang, F., Liu, L., Yan, Q., Van Tassel, S.H., Kovacs,
K., Chew, E.Y., Lu, Z., et al.: Harnessing the power of longitudinal medical imaging
for eye disease prognosis using transformer-based sequence modeling. NPJ Digital
Medicine 7(1), 216 (2024)

https://biovisart.com.cn


10 J. Zhao and Z. Chen et al.

8. Isensee, F., Jaeger, P.F., Kohl, S.A., Petersen, J., Maier-Hein, K.H.: nnu-net: a
self-configuring method for deep learning-based biomedical image segmentation.
Nature methods 18(2), 203–211 (2021)

9. Karimi, D., Vasylechko, S.D., Gholipour, A.: Convolution-free medical image seg-
mentation using transformers. In: International conference on medical image com-
puting and computer-assisted intervention (MICCAI). pp. 78–88. Springer (2021)

10. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907 (2016)

11. Lai, T.: Interpretable medical imagery diagnosis with self-attentive transformers:
a review of explainable ai for health care. BioMedInformatics 4(1), 113–126 (2024)

12. Lee, J.G., Lee, C.Y., Park, I.K., Kim, D.J., Park, S.Y., Kim, K.D., Chung, K.Y.:
Number of metastatic lymph nodes in resected non–small cell lung cancer predicts
patient survival. The Annals of thoracic surgery 85(1), 211–215 (2008)

13. Li, H., Wang, Y., Zhu, J., Guo, D., Yu, Q., Yan, K., Lu, L., Ye, X., Zhang,
L., Wang, Q., et al.: Semi-supervised lymph node metastasis classification with
pathology-guided label sharpening and two-streamed multi-scale fusion. In: Inter-
national conference on medical image computing and computer-assisted interven-
tion (MICCAI). pp. 623–633. Springer (2024)

14. Lu, M.Y., Williamson, D.F., Chen, T.Y., Chen, R.J., Barbieri, M., Mahmood,
F.: Data-efficient and weakly supervised computational pathology on whole-slide
images. Nature biomedical engineering 5(6), 555–570 (2021)

15. Ma, J., He, Y., Li, F., Han, L., You, C., Wang, B.: Segment anything in medical
images. Nature Communications 15(1), 654 (2024)

16. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word repre-
sentations in vector space. arXiv preprint arXiv:1301.3781 (2013)

17. Moor, M., Banerjee, O., Abad, Z.S.H., Krumholz, H.M., Leskovec, J., Topol, E.J.,
Rajpurkar, P.: Foundation models for generalist medical artificial intelligence. Na-
ture 616(7956), 259–265 (2023)

18. Prenzel, K.L., Mo, S.P., Sinning, J.M., Baldus, S.E., Brochhagen, H.G., Schneider,
P.M., Ho, A.H., et al.: Lymph node size and metastatic infiltration in non-small
cell lung cancer. Chest 123(2), 463–467 (2003)

19. Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomed-
ical image segmentation. In: International conference on medical image computing
and computer-assisted intervention (MICCAI). pp. 234–241. Springer (2015)

20. Sun, Y., Li, K., Chen, D., Hu, Y., Zhang, S.: Lomia-t: A transformer-based lon-
gitudinal medical image analysis framework for predicting treatment response of
esophageal cancer. In: International conference on medical image computing and
computer-assisted intervention (MICCAI). pp. 426–436. Springer (2024)

21. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser,
Ł., Polosukhin, I.: Attention is all you need. Advances in neural information pro-
cessing systems (NeurIPS) 30 (2017)

22. Watanabe, S.i., Asamura, H.: Lymph node dissection for lung cancer: significance,
strategy, and technique. Journal of thoracic oncology 4(5), 652–657 (2009)

23. Yuan, M., Xia, Y., Chen, X., Yao, J., Wang, J., Qiu, M., Dong, H., Zhou, J., Dong,
B., Lu, L., et al.: Cluster-induced mask transformers for effective opportunistic
gastric cancer screening on non-contrast ct scans. In: International conference on
medical image computing and computer-assisted intervention (MICCAI). pp. 146–
156. Springer (2023)

24. Zheng, H., Gao, W., Fei, K., Xie, H.k., Jiang, G.n., Ding, J.a., Li, C., Chen, C.,
Zhang, L.: Prognostic role of station 3a mediastinal nodes for non-small-cell lung
cancers. Interactive cardiovascular and thoracic surgery 17(3), 447–454 (2013)


	Deep Knowledge-Infused Transformer for NSCLC Lymph Node Station Metastasis Prediction: Development of an AI-Powered Intraoperative Decision System

