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Abstract. Alzheimer’s disease (AD), as a progressive neurodegenera-
tive disorder, poses a growing global health threat, making early diagno-
sis imperative. Multiview brain network (BN) analysis from resting-state
functional MRI (rs-fMRI) has emerged as a promising approach, where
brain regions and their interactions are modeled as nodes and edges
across complementary views. However, existing methods have limita-
tions. First, they rely on single-measure BNs with fixed nodes and edges,
potentially insufficient for capturing complex brain interactions. Second,
they lack effective separation of view-consistent and view-specific repre-
sentations, leading to redundancy and reduced generalizability. To ad-
dress these challenges, we propose a novel Masked Multiview Brain Net-
work Analysis (MMBNA) framework, integrating multi-measure BNs
construction, random masking, and disentangled representation
learning. Specifically, we first construct multiview BNs via multi-measure
connectivity (capturing full/partial/nonlinear correlations) and multi-
granularity masking (at node/edge/feature levels), enriching spatio-temp-
oral-topological diversity while preserving semantic similarity. Subse-
quently, we perform the view-consistent representation learning via cross-
view masking, and then a disentangling mechanism is introduced to
learn a purer view-specific representation to filter out the redundancy
from view-consistent representations, resulting in more compact multi-
view brain representations. Experiments on the ADNI2 subset of the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset, demon-
strate the effectiveness of the proposed method, achieving significant
improvements in diagnostic accuracy and interpretability compared to
state-of-the-art approaches.
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Fig. 1. Illustration of the proposed Masked Multiview Brain Network Analysis
(MMBNA) framework, which consists of (I) Multiview Brain Network Construction;
(II) Learning More Robust View-Consistent Representation via Cross-View Mask-
ing; (III) Learning Purer View-Specific Representation through Disentangling; (IV)
Multiview Brain Representation Classification.

1 Introduction

Alzheimer’s disease (AD), a progressive neurodegenerative disorder with com-
plex brain function disturbances, presents major social and healthcare burdens,
emphasizing early diagnosis [1, 2]. Resting-state functional magnetic resonance
imaging (rs-fMRI) has emerged as a pivotal non-invasive method to understand
pathological mechanisms of neurological disorders through the measurement of
blood oxygen level-dependent (BOLD) signals [3]. Functional brain network
(FBN) analysis, representing BOLD signals in brain regions of interest (ROIs)
as nodes and their interactions as edges, has been widely adopted to identify
potential biomarkers such as abnormal nodes or edges using machine learning or
deep learning approaches, thereby enhancing the accuracy of distinguishing AD
patients from healthy controls [4–6].

Recent FBN analysis methods have proven effective in AD diagnosis [6–8].
Most methods rely on single-view brain networks, generally constructed via Pear-
son correlation (PC), and use deep learning approaches for feature extraction and
classification [9, 10]. However, single-view FBN only models one type of corre-
lation, overlooking complex interactions among brain ROIs. To overcome this,
multiview FBN methods have been introduced [11, 12]. Some studies generate
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multiple views by applying various thresholding strategies on single-measure
networks [13, 14], but these methods focus solely on varying FBN sparsity, ne-
glecting the complexity of brain connectivity patterns. Ideally, topologically di-
verse yet semantically consistent data views are crucial to the performance of
multiview FBN analysis. To this end, Zhang et al. [15] and Wang et al. [16]
constructed multi-measure brain networks and used linear weighting and tensor
decomposition-based views fusion, respectively. However, their fusion methods
overlook redundancy between view-consistent and view-specific information, lim-
iting efficiency and performance [17].

To address these challenges, we propose a novel Masked Multiview Brain Net-
work Analysis (MMBNA) framework, which integrates multi-measure FNB
construction, masked modeling with disentangled representation learn-
ing to derive high-quality brain representations for rs-fMRI-based AD diagnosis.
As shown in Fig. 1, multiple FBN views are first constructed using various mea-
sures including PC, Sparse Representation (SR) and Mutual Information (MI) to
model the full, partial and nonlinear correlations among brain regions, followed
by random multi-granularity masking at the node-, feature-, and edge-levels,
ensuring the views exhibit both topological diversity and semantic consistency.
Subsequently, we learn view-consistent and view-specific representations employ-
ing Graph Isomorphism Network (GIN) and Transformer, respectively, while
reconstructing masked components in multiviews to capture intrinsic brain rep-
resentation. Moreover, a disentangling mechanism is introduced to reduce redun-
dancy between view-consistent and view-specific representations, yielding purer
and more discriminative representations. Finally, the fused representation is used
for AD classification, ensuring both accuracy and interpretability.

2 Methodology

2.1 Masked Multiview Brain Network Construction across
Multi-Measure Connectivities

As shown in Stage (I) of Fig. 1, in typical FBN analysis, a brain network is mod-
eled as a graph G(X,A), where X ∈ RM×T represents the node-feature matrix
whose rows are average BOLD signals within each ROI, M is the number of
ROIs, T is the length of BOLD signals, and A ∈ RM×M is the adjacency matrix
denoting relationships among nodes. To capture complex interaction patterns,
we employ multiple metrics: PC for full correlations, SR [18] for partial correla-
tions, and MI [19] for nonlinear dependencies to construct brain connectivities.
To further enhance view diversity, we introduce different-granularity random
masking strategies: node-based masking removing subsets of nodes and their
edges to alter spatial scales, edge-based masking that disturbs topology by
masking a proportion of edges, and feature-based masking randomly covering
a certain ratio of node feature (i.e., original BOLD signals) along the time axis,
thereby modifying temporal scales across all the multi-measure brain connectiv-
ities. These strategies generate complementary FBN views, ensuring diversity in
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spatial, temporal, and topological structures while maintaining semantic simi-
larity. The masking rate, controlled by a hyperparameter, balances structural
perturbation and semantic consistency.

Furthermore, it is noteworthy that these masked multiview FBNs would be
reconstructed during subsequent brain representation learning, compelling the
model to acquire intrinsic discriminative representations, thereby enhancing the
generalizability.

2.2 View-Consistent Brain Representation Learning through
Masked Modeling

The obtained multiview brain networks with v views,
{
Gi(Xi, Ai) | i = 1, . . . , v

}
,

are fed into a consistent encoder GIN [20] to capture a shared consistent repre-
sentation z across views, which is subsequently input into consistent decoders for
reconstruction, as shown in Stage (II) of Fig. 1. Concretely, for interpretability,
we assume the prior of z is a standard normal distribution, p(z) ∼ N (0, I). To
facilitate optimization, we apply the reparameterization trick to sample qϕ(z |
Gi) = µ+ ϵ · σ, where qϕ(z | Gi) is the approximate posterior distribution with
the GIN’s parameters ϕ, µ and σ are learned parameters, and ϵ ∼ N (0, 1) is
a noise term. Subsequently, z is input into v consistent decoders (MLPs) to
predict the adjacency matrix of each view, Âi. The reconstruction loss across
all the masked views is: Lre = 1

v

∑v
i=1

[
MSE(Ai, Âi) + (1− CosSim(Ai, Âi))

]
,

where MSE is Mean Squared Error ensuring precision in local details and CosSim
denotes Cosine Similarity preserving consistency in semantic representation.

Moreover, we introduce a classification loss with a MLP classifier: Lc =
− 1

v

∑v
i=1

[
α(1− ŷi)γyi log(ŷi)

]
, where yi and ŷi denote the true label and the

predicted probability for the ith view, α is a weighting factor to balance posi-
tive and negative, and γ reduces the influence of well-classified samples on the
loss. Additionally, a KL divergence term regularizes the consistent representation
space to conform to the prior distribution: LKL = − 1

v

∑v
i=1 KL(qϕ(z | Gi)∥p(z)).

The total loss function of Stage (II) combines all the objectives: LII =
α1Lre + α2Lc + LKL, where α1 and α2 are trade-off operators. Notably, the
learned parameters of the consistent encoder here will be frozen in the subse-
quent stage to extract view-consistent representations for disentanglement.

2.3 View-Specific Brain Representation Learning via Disentangling
Strategy

As shown in Stage (III) of Fig. 1, to filter out redundancy, we disentangle view-
consistent and view-specific representations, obtaining purer view-specific repre-
sentations. Specifically, for each view, we first extract coarse view-specific rep-
resentations, denoted as gi, using a series of Transformer encoders [10] to model
long-range dependencies among FBN nodes. Then, considering the intractability
of directly estimating mutual information I(z, gi), we adopt the CLUB estima-
tor [21], which provides a variational upper bound that avoids the explicit com-
putation of marginal distributions. We disentangle gi from the view-consistent
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representation z derived from the frozen consistent encoder GIN, with the fol-
lowing formula:

Lclub =
1

v

v∑
i=1

(Ep(z,gi)

[
log q(gi | z)

]
− Ep(z)p(gi)

[
log q(gi | z)

]
) (1)

where p(z, gi) and p(z)p(gi) represent the joint and marginal distributions of
z and gi, respectively. This estimator minimizes the upper bounds of mutual
information, yielding purer view-specific representations ḡi. Subsequently, z and
ḡi are concatenated view-wise and fed into a series of specific decoders (MLPs)
for reconstruction and a classifier MLP for prediction, utilizing the same loss
functions Lre, Lc and LKL in Stage (II). The total loss of Stage (III) combines
four objectives:

LIII = βLre + γLc + λLclub + LKL (2)

where β, γ and λ are trade-off operators.

2.4 Multiview Brain Representation Classification

During testing, the test data are fed into the trained framework above, where the
final fused representation, obtained via averaging, serves for AD diagnosis fully
leveraging the complementary information from multiple views, as illustrated in
Stage (IV) of Fig. 1.

3 Experiment

Materials and Data Processing. We used the ADNI2 subset of the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) dataset1 . It comprises 563 subjects
distributed as follows: 154 Cognitively Normal (CN), 165 Subjective Memory
Complaints (SMC), 145 Mild Cognitive Impairment (MCI), and 99 AD. For
performing binary classification, CN (154 samples) was labeled as Class 0, while
SMC, MCI, and AD (409 samples in total) were grouped as Class 1. Rs-fMRI
data were collected on a 3.0-T Philips scanner (TR = 3000 ms, TE = 30 ms,
flip angle = 80°, 48 slices at 3.3 mm thickness, 140 volumes), and the brain was
parcellated into 116 regions using the AAL template with 137 time points of
BOLD signals.

Experimental Settings. We use 5-fold cross-validation (CV) to split the dataset,
training each fold for 60 epochs with a learning rate of 0.001 and a batch size of
32. We use a 3-layer GIN network as the consistent encoder, Transformer with
4-head attention as the view-specific encoder, and 1-layer MLP (hidden dimen-
sion = 128, dropout = 0.5) serving as bothe view-consistent and view-specific
decoders. Evaluation is based on six metrics: accuracy (ACC), area under the
curve (AUC), specificity (SPE), precision (PRE), sensitivity (SEN), and F1-score
1 http://adni.loni.usc.edu/
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(F1). All experiments follow a standardized data preprocessing pipeline [22] to
ensure fairness and reproducibility.

Competing Methods. We compare the proposed method with three state-
of-the-art (SOTA) single-view FBN analysis models (STGCN, BrainGNN, and
Transformer) and two multiview methods (MVS-GCN and Zhang et al.’s method).
STGCN [9]: It employs a three-layer spatio-temporal graph convolutional en-
coder that integrates 1D temporal convolutions with spatial graph convolutions
to model BNs. BrainGNN [7]: The model employs ROI-aware graph convolu-
tional layers to capture functional connectivity patterns leveraging the topolog-
ical and functional information of fMRIs. Transformer [10]: This model uses
self-attention mechanisms to capture long-range dependencies across brain re-
gions in fMRI data. MVS-GCN [13]: It uses multiple FBN views with different
sparse structures and integrates graph structure priors to multiview graph em-
bedding learning, resulting in improved classification performance. Zhang et
al.’s Method [15]: It integrates learning fusion weights for multiple FBN views,
constructed by PC, SR, MI, and higher-order measures, with classification using
L1-norm support vector machine into a unified framework.

Table 1. Comparison of experimental results on ADNI2 with the best results in bold.

Model ACC (%) AUC (%) SEN (%) SPE (%) PRE (%) F1 (%)
BrainGNN [7] 65.40 61.20 64.85 63.90 66.85 65.83
STGCN [9] 70.11 62.08 86.08 76.85 76.83 80.69
Transformer [10] 75.22 82.70 84.00 57.89 79.75 81.82
MVS-GCN [13] 74.04 62.19 95.16 74.24 77.35 85.03
Zhang et al.’s [15] 77.10 84.50 83.90 77.80 83.95 84.58
MMBNA (Ours) 86.90 89.77 88.71 81.82 93.22 90.91

Experimental Results. As summarized in Table 1, our MMBNA framework
achieves state-of-the-art performance on ADNI2, surpassing all competing meth-
ods across key metrics. Notably, MMBNA attains the highest accuracy (ACC:
86.90%), outperforming the strongest baseline (Zhang et al. [15]) by 9.80%, and
demonstrates significant improvements in AUC (89.77%) and PRE (93.22%).
The strong performance of MMBNA can be attributed to two key innovations:
(1) By integrating PC (full), SR (partial), and MI (nonlinear) measures with
multi-granularity masking (node-, edge-, and feature-level), MMBNA con-
structs semantically consistent yet topologically diverse FBN views,
capturing complementary brain connectivity patterns overlooked by other ap-
proaches; (2)Through disentangled representation learning, MMBNA isolates
disease-invariant features from measurement specific noise, reducing
redundancy and enhancing discriminative power.
Ablation Study. To evaluate the contribution of each component, we compared
MMBNA with its four variants (Table 2): (1) Only Consistent Learning, (2)
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Table 2. Impact of different model components on performance with best results in
bold.

Model Configuration ACC (%) PRE (%) F1 (%) AUC (%)
Only Consistent Learning 72.32 71.95 72.13 69.10
W/O Disentanglement Loss 76.96 82.67 77.02 72.48
W/O Multiview Construction 66.96 84.51 76.43 68.96
W/O Multiview and Disentanglement Loss 63.69 65.36 64.02 61.52
Full Model 86.90 93.22 90.91 89.77

W/O Disentanglement Loss, (3) W/O Multiview Construction, and (4)
W/O Multiview and Disentanglement Loss. The results demonstrate that
relying solely on consistent learning fails to fully leverage the richness of multi-
view representations, limiting performance. Excluding the disentanglement loss
reduces feature separation, increasing redundancy and potentially hindering in-
terpretability. Removing the multiview module weakens the model’s ability to
capture diverse brain connectivity patterns. Notably, removing both the multi-
view module and disentanglement loss results in the worst performance, demon-
strating the essential and complementary roles of both modules. Overall, the full
model’s superior performance highlights the importance of integrating multiview
construction, masked consistent learning, and disentanglement for effective AD
diagnosis.

Table 3. Parameter robustness analysis and the best results are shown in bold.

Configuration ACC (%) PRE (%) F1 (%) SEN (%) SPE (%)
β = 1.0, γ = 1.0, λ = 1.0 82.14 82.88 82.40 88.03 82.45
β = 0.4, γ = 0.4, λ = 0.2 86.90 93.22 90.91 88.71 81.82
β = 0.7, γ = 0.2, λ = 0.1 82.74 83.06 82.87 82.43 72.45
β = 0.5, γ = 0.2, λ = 0.3 84.52 83.37 84.43 84.43 80.39
β = 0.6, γ = 0.1, λ = 0.3 84.71 85.89 85.79 88.89 76.43

Fig. 2. Effect of mask ratio on model performance (optimal at 0.05).
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4 Discussion

Parameter Sensitivity Analysis. First, as shown in Fig. 2, model perfor-
mance peaks at the mask ratio of 0.05, achieving an optimal balance between pre-
serving discriminative information and introducing view diversity. Lower mask
ratios provide insufficient diversity, while higher ratios obscure crucial details,
degrading performance. Second, Table 3 shows the impact of varying weight co-
efficients (β, γ, λ) in Eq. (2) on model performance. While performance varies
slightly across different configurations, the relatively small fluctuations in ACC,
PRE, and F1-score indicate the model’s robustness to parameter changes.

Fig. 3. Illustration of the top ten most discriminative brain connectivities for AD
classification, with line thickness indicating connection strength between ROIs.

Discriminative ROIs & Functional Connectivities. As depicted in Fig. 3,
we employed the BrainNet Viewer toolbox2 to visualize the ten most discrimina-
tive functional connections, highlighting key brain ROIs and their interactions for
AD classification. Notably, connections involving the supplementary motor area
(SMA.R), thalamus (THA.R) and superior temporal gyrus (STG.R) highlight
their established roles in motor coordination, sensory integration, and cognitive
functions. Furthermore, connections including the precuneus (PCUN.L), post-
central gyrus (PCG.R), and inferior occipital gyrus (IOG.R) correspond with re-
ported disruptions in connectivity associated with neurodegenerative conditions,
specifically impacting visuospatial processing, memory retrieval, and attentional
control in AD [23]. Therefore, these regions represent promising biomarkers for
early diagnosis of AD, providing valuable information on the underlying neural
mechanisms of the disease.

2 https://www.nitrc.org/projects/bnv/
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5 Conclusion and Future Work

In this paper, we propose the Masked Multiview Brain Network Analy-
sis (MMBNA) Framework through multiview brain network representation
learning for fMRI-based AD diagnosis. Our approach addresses limitations of ex-
isting methods through (1) integrating multi-measure brain connectivity estima-
tion with masking to generate topologically diverse yet semantically similar FBN
views and (2) disentangling view-specific representations from view-consistent
representations, reducing redundancy. Experiments on ADNI2 demonstrate that
our framework outperforms SOTA and baseline methods. However, its limita-
tions include the use of the predefined AAL template, potentially introducing
biases, and the validation solely on the ADNI2 dataset, restricting generalizabil-
ity.

Future work will explore adaptive, data-driven brain network construction
methods to learn subject-specific ROIs and functional connectivities, overcom-
ing the limitations of fixed anatomical templates. Additionally, we will validate
the framework on a wider range of tasks to ensure robustness and broader ap-
plicability.
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