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Abstract. Cardiovascular disease (CVD) remains the leading cause of
death worldwide, requiring urgent development of effective risk assess-
ment methods for timely intervention. While current research has intro-
duced non-invasive and efficient approaches to predict CVD risk from
retinal imaging with deep learning models, the commonly used fundus
photographs and Optical Coherence Tomography (OCT) fail to capture
detailed vascular features critical for CVD assessment compared with
OCT angiography (OCTA) images. Moreover, existing methods typi-
cally classify CVD risk only as high or low, without providing a deeper
analysis on CVD-related blood factor conditions, thus limiting predic-
tion accuracy and clinical utility. As a result, we propose a novel multi-
purpose paradigm of CVD risk assessment that jointly performs CVD
risk and CVD-related condition prediction, aligning with clinical experi-
ences. Based on this core idea, we introduce OCTA-CVD, the first OCTA
dataset for CVD risk assessment, and a Vessel-Aware Mamba-based
Prediction model with Informative Enhancement (VAMPIRE) based
on OCTA enface images. Our proposed model aims to extract crucial vas-
cular characteristics through two key components: (1) a Mamba-Based
Directional (MBD) Module that captures fine-grained vascular trajec-
tory features and (2) an Information-Enhanced Morphological (IEM)
Module that incorporates comprehensive vessel morphology knowledge.
Experimental results demonstrate that our method can surpass standard
classification backbones, OCTA-based detection methods, and ophthal-
mologic foundation models. Our codes and the collected OCTA-CVD
dataset are available at https://github.com/xmed-lab/VAMPIRE.
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Fig. 1. Comparative Analysis of (a) Task Paradigm and (b) Model Capability. (a) Per-
formance Comparison between binary risk classification and joint risk factor prediction.
(b) Evaluation of vessel feature representation abilities between OCTA-Based Model
and our proposed Vessel- Aware Model.

1 Introduction

Cardiovascular diseases (CVDs) remain a significant burden on public health
and a leading cause of mortality worldwide. The World Health Organization
(WHO) estimates that CVDs are responsible for nearly 18 million deaths each
year, accounting for over 30% of all global deaths [1]. Thus, risk assessment of
CVD is critical, as early intervention can prevent severe cardiovascular events.
Recent advances in retinal imaging and artificial intelligence (AI) [2,13,15,14]
have the potential to revolutionize cardiovascular risk assessment into a non-
invasive and automatic approach. The retinal vascular structure shares anatom-
ical similarities with the coronary circulation, making it a promising biomarker
for monitoring vascular health [6,23]. Several studies [3,4,11,19,21] have leveraged
deep learning models for fundus photography or Optical Coherence Tomography
(OCT) to predict CVD risk based on retinal vascular morphology and structural
changes. Poplin et al. [21] first attempted to apply a deep learning model to fun-
dus photos for predicting the risk of CVD events. Cheung et al. [3] automatically
measured retinal-vessel calibre in retinal photographs and demonstrated its asso-
ciation with CVD risk factors. Other works [4,11] further complemented fundus
photos with additional modalities, like cardiovascular magnetic resonance im-
ages and clinical risk factors, to further improve the risk prediction accuracy.
Maldonado et al. [19] developed an AT model with OCT scans to leverage subtle
abnormalities in retinal microstructure. These methods have achieved promising
result in non-invasive CVD risk prediction, serving as a valuable alternative to
conventional CVD risk assessment approaches and facilitating earlier detection.
Despite these advancements, two significant limitations hinder these models
in providing more reliable and accurate risk prediction. First, the input modali-
ties employed in the previous methods, fundus photography and OCT, capture
insufficient vascular details for precise CVD risk assessment due to their lim-
ited resolution of microvascular structures, particularly compared with OCT
angiography (OCTA) images that reflect capillary networks and vessel density
more clearly. Second, existing approaches merely perform binary CVD risk de-
tection without assessing fine-grained CVD risk factors, such as blood glucose
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and cholesterol, which undermines both confidence and reliability. As proved
by [28], these blood biomarkers are vital in determining CVD risk, and exclud-
ing these factors would notably reduce risk prediction accuracy. Additionally,
simply providing binary risk classification (high/low risk) poses challenges for
patients to understand and trust the results, preventing the implementation of
timely and personalized intervention strategies.

To overcome these limitations, we propose a novel paradigm of utilizing
OCTA images to predict four key CVD-related conditions, including high blood
glucose, high blood cholesterol, high blood triglycerides, and high blood pressure,
while jointly performing 10-year CVD risk prediction. Unlike existing methods
that solely perform binary risk classification, our multi-task framework provides
deeper insights into blood biomarker abnormalities, which align well with empir-
ical clinical knowledge, thus substantially enhancing CVD risk prediction perfor-
mance by over 4% in F1 score, see in Fig. 1 (a). Besides, the identification of blood
factor conditions offers more clinically interpretable results could be delivered,
thereby addressing a critical gap in current CAD risk assessment frameworks.

To fulfill this objective, we collect the first OCTA enface dataset, OCTA-
CVD, for joint CVD risk and factor estimation. We first evaluate existing
deep learning models developed to extract modality-specific features from OCTA
images. [8,16,27,29|. However, our evaluation reveals that directly applying these
methods inadequately captures continuous vascular structures, which is a cru-
cial characteristic in OCTA imaging, as illustrated in Fig. 1 (b). Consequently,
we draw inspiration from Mamba’s capability in modeling long-range dependen-
cies [7,9,26,31], which is suitable for capturing vascular trajectory. Nevertheless,
Mamba-based models typically process images in patches, hindering the com-
prehensive understanding of continuous morphological features. Building upon
these insights, we introduce a Vessel-Aware Mamba-based Prediction model
with Informative Enhancement (VAMPIRE) for joint CVD risk and CVD-
related factor estimation given OCTA enface images. The proposed VAMPIRE
model consists of two components: @ Mamba-Based Directional (MBD)
Module focusing on the intricate trajectories of inner vascular paths, and @
Information-Enhanced Morphological (IEM) Module to integrate com-
prehensive vessel shape information. These two components could collaboratively
extract CVD-specific vessel features from OCTA enface images, thus effectively
leveraging vascular structure information for accurate prediction of CVD risk
and related factors. By combining both directional and morphological knowl-
edge, our method could effectively attend to vessel features as in Fig. 1 (b), and
outperform general classification baselines, OCTA-based detection models, and
ophthalmological foundation models on multi-center validation datasets.

2 Methodology

2.1 Architecture Overview

An overview of our framework is presented in Fig. 2. To align with standard
Mamba sequence processing, we first segment the input OCTA enface image
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Fig. 2. Overview of the Proposed VAMPIRE Framework, which contains (a) Mamba-
Based Directional (MBD) Module for vascular trajectory feature extraction and (b)
Information-Enhanced Morphological Module for vessel shape knowledge integration.

I € RBXHXW into flattened patches P € REXNXhXw where B represents the
batch size, N denotes the number of patches, and (H, W)/(h,w) corresponds to
the size of original image/patch. These 2D patches are then projected into 1D
sequences and combined with position encodings, yielding X € RBEXNXP where
D represents the dimension of patch embeddings. Following Vim [31], we also
apply the class token t.;s to encode global knowledge. Next, the complete patch
sequence Xg = [tes; X] is fed into the proposed sequential VAMPIRE blocks,
which is composed of two parts: a Mamba-Based Directional (MBD) Module
that effectively extracts vascular sequence features (§ 2.2), and an Information-
Enhanced Morphological (IEM) Module that incorporates vessel morphology
descriptions to enrich the model’s representation (§ 2.3). Finally, the extracted
features are input into a linear classification layer to obtain the final prediction
for CVD risk and related conditions. The model is optimized with binary cross-
entropy loss as the classification loss function. In the following sections, we will
elaborate on the details of each constituent module.

2.2 Mamba-Based Directional Module

To effectively extract vessel trajectory features from OCTA enface images, we
adopt the Mamba-Based Directional (MBD) Module for modeling vascular se-
quences, as demonstrated in Fig. 2 (a). The intricate structure of blood vessels
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in OCTA images poses challenges for conventional Mamba scanning operations.
The commonly applied linear- or cross-scanning approaches inevitably disrupt
vessel continuity, thereby constraining the model’s capability to capture intrinsic
vascular structure. To address this limitation, we intuitively introduce vessel seg-
mentation maps as directional guidance to formulate the scanning order within
the State Space Model (SSM) module. Specifically, we employ SAM-OCTA [25],
a pre-trained vessel segmentation network for OCTA images, to generate ini-
tial vessel maps, followed by noise filtering and morphological transformation to
acquire well-defined vascular structures. Subsequently, we use depth-first search
(DFS) to traverse the vessel tree in the segmentation map to obtain different con-
tinuous trajectories of large vessels, and generate patch sequences along each vas-
cular path Vi = [v; 1, ...0; »,,] based on the refined segmentation map. The com-
plete scanning sequence is then constructed by concatenating vessel patches from
different branches with intermediate background patches Bi; = [b;1,...b5m,],
which can be formulated as:

S = concat; jer[Vi; Bij; Vil , (1)

where T is the number of all the continuous vessel trajectories.

Through the vessel-following traversal paths, our proposed MBD module
enables each OCTA patch to integrate contextual information from adjacent
patches along the same vascular branch, thus encouraging the model to concen-
trate on CVD relevant vascular features.

2.3 Information-Enhanced Morphological Module

After obtaining the output of the MBD module, X3, we proceed to integrate ves-
sel shape descriptive information through our subsequent Information-Enhanced
Morphological (IEM) module. Considering that the patch-wise encoding mecha-
nism in Mamba-based architecture would potentially constrain the model’s abil-
ity to comprehend global vascular morphology, we propose to promote feature
extraction through textual descriptions generated by the Multimodal Large Lan-
guage Model (MLLM), as shown in Fig. 2 (b). However, we observe that directly
feeding OCTA images into MLLMs yields generic and uninformative descrip-
tions, such as “the retinal vessels are well-defined”, providing limited morpho-
logical insights. Consequently, we first employ a classification model trained on
the OCTA-500 dataset [12] to identify potential retinal diseases. Subsequently,
we prompt GPT-4o [20] with the diagnostic results to generate descriptions t
on possible vascular morphologies. Combined with learnable prompts p, these
descriptions are fed into a frozen text encoder @ and then integrated with im-
age representation Xj through the cross-attention mechanism. The process is
denoted as:

T = Or([p;t]) (2)
X;t+1 = CrossAttention(X$, T, T) , (3)
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Table 1. Data Statistics of the collected OCTA-CVD dataset.

Category HR HG HC HTG HTN Total

Patients 101 81 267 296 215 843
Images 195 160 525 580 420 1659

Through this approach, our model could effectively capture both fine-grained
vessel trajectory features and global morphological information, enhancing its
capability to identify CVD-associated microvascular patterns.

3 Experiments

3.1 Experimental Setup

Dataset. We collect an in-house OCTA dataset, OCTA-CVD!, for joint CVD
risk and factor estimation, which contains 1659 OCTA enface images of Super-
ficial (ILM-IPL), Deep (INL-OPL), and Avascular (OPL-BM) layers from 843
patients in a local hospital’s health check-up center from 2022 August to 2022
December. The dataset includes 74.3% female and 25.7% male, with a mean age
of 45412 years.. The OCTA images were captured in a 6x6 mm? area centering
at fovea with a Velite C3000 OCTA device. Each patient is annotated with CVD
High Risk (HR) and CVD-related conditions derived from blood test, including
high blood glucose (HG), high blood cholesterol (HC), high blood triglycerides
(HTG), and high blood pressure (hypertension, HTN). The data statistics is
shown in Table 1. The dataset is divided using five-fold cross-validation, main-
taining consistent class distributions in both training and test sets. To prevent
data leakage, we ensured that data from individual patients appeared in only
one subset.

Data Preprocessing. We first apply median filter for OCTA enface images
for noise reduction, and then implement contrast-limited adaptive histogram
equalization (CLAHE) to enhance vessel clarity. All the images are resized to
448 x448 for input. We adopt data augmentation including random crop, flip,
and rotation.

Implementation Details. During training, we also incorporate patient demo-
graphic information (age and gender) as additional input features to concatenate
with the image features for final classification. The OCT layers are concatenated
along the channel dimension to form a three-channel input. All the experiments
are conducted on the NVIDIA RTX 3090 GPU. We employ AdamW optimizer
with a base learning rate of le™*, scaled according to batch size, and a weight
decay of 5e72. A cosine annealing scheduler is applied to gradually reduce the
learning rate to zero. For fair evaluation, we apply identical data preprocessing
strategies and running epochs for all the experiments and report the average per-
formance of all the categories at the final epoch across five-fold cross-validation.
Our results are reported at eye level.

! Our OCTA-CVD dataset is released at https://github.com/xmed-lab/VAMPIRE
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Table 2. Results on our collected OCTA-CVD dataset. The bold and underlined num-
bers indicate the best and second-best score, respectively. T: CNN backbones; x: OCTA-
based detection methods; I: Fine-tuned ophthalmologic foundation models.

Model Precision Recall F1 Score Accuracy AUC AUPR

ResNet[10] 0.4928+0.0396  0.5750+0.0387 0.5225+0.0268 0.757640.0244 0.7581+0.0244 0.5295+0.0224
EfficientNetf[24] 0.4581+0.0387 0.6057+0.0542 0.5188+0.0352 0.7485+0.0179 0.758240.0215 0.52070.0340
ViTT[5] 0.5058+0.0593  0.5783+0.0270 0.5374+0.0214 0.775240.0202 0.7778+0.0222 0.5513+0.0164
Swin V27[18] 0.5010+0.0279  0.5592+0.0589 0.5265+0.0264 0.778240.0282  0.7879+0.0356 0.5582-+0.0357
Vim'[31] 0.4636+0.0137  0.5517+0.0461 0.4851+0.0161  0.781840.0450 0.7971+0.0263 0.57120.0308
PolarNet*[17] 0.5758+0.0376  0.4142+0.0341 0.4077+0.0509 0.778840.0043 0.7569+0.0474 0.5291+0.0124
Eye-AD*[8] 0.515340.0199  0.6349+0.0132  0.5754+0.0102 0.7594+0.0126 0.7501+0.0235 0.530740.0143

RETFound*[30] 0.5614+0.0077 0.5886+0.0356 0.5407+0.0116 0.7885+0.0116 0.8024+0.0190 0.58380.0382
VisionFM*[22]  0.5610+0.0355 0.6351+0.0439 0.5522+0.0255 0.773940.0164 0.8061+0.0192 0.6009+0.0341
VAMPIRE 0.6068+0.0652 0.6570+0.0442 0.6271+0.0293 0.8012+0.0183 0.8244+0.0153 0.6467+0.0394

Table 3. Extended Comparison on Sup- Table 4. Ablation study of the proposed
plementary Dataset. The AUC metric for MBD and IEM modules in our method on

each category is presented. the OCTA-CVD dataset.
Model HR HG HC NTG HTN Model F1 Score AUC AUPR
ViT [5] 0.9430 0.6436 0.6068 0.6655 0.7371 Baseline 0.552240.0255 0.8061+0.0192 0.6009+0.0341

RETFound [30] 0.9599 0.6584 0.6377 0.7094 0.7465 / MBD 0.6162+0.0322 0.8208+0.0180 ~0.6301+0.037
VisionFM [22] 0.9716 0.6632 0.6546 0.7220 0.7365 w/ IEM 0.6101+0.0319 0.8195+0.0193 0.6398+0.0355
VAMPIRE 0.9742 0.7649 0.7205 0.7462 0.7668 DBoth 0.6271+0.0293 0.8244+0.0153 0.6467+0.0394

3.2 Comparison with State-of-the-Art Models

To demonstrate the effectiveness of our proposed approach, we compare our
model with Convolutional Neural Network (CNN) backbones [5,10,18,24,31],
OCTA-based detection methods [8,17], and fine-tuned ophthalmologic founda-
tion models [22,30]. As shown in Table 2, it is apparent that fine-tuned ophthal-
mologic foundation models can outperform both CNN backbones and OCTA-
based models. This suggests that the inherent ophthalmologic knowledge fa-
cilitates the model to effectively adapt to the OCTA data distribution even
without specific pre-training on OCTA images. Furthermore, the comparison re-
sults demonstrate that our proposed VAMPIRE model marginally surpasses all
the other baselines. Notably, our approach achieves the improvement of 7.55%
(64.67% v.s. 57.12%) and 11.6% (64.67% v.s. 53.07%) compared with the best
AUPR of CNN backbones and OCTA-specific models. Additionally, our model
improves the state-of-the-art fine-tuned ophthalmologic foundation model from
55.22% to 62.71% in F1 score and 60.09% to 64.67% in AUPR.

Extended Experiment. To further verify the effectiveness and generalizability
of our method, we also collect a dataset from another hospital for evaluation,
which contains 765 images from 379 patients. The AUC results of all the cate-
gories are shown in Table 3. Notably, our proposed VAMPIRE model consistently
outperforms other baselines across all five categories, demonstrating its remark-
able ability to interpret OCTA-specific features with a particular target on vessel
characters.
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Fig.3. Comparison between Different Fig.4. The Results of Integrating the
Scanning Strategies for the Mamba-Based Information-Enhanced Morphological
Directional Module. Module into Different Backbones.

3.3 Ablation Studies

Effectiveness of Proposed Modules. The improvement of our VAMPIRE
model can be attributed to the proposed two components, the Mamba-Based
Directional (MBD) module modeling the trajectories of inner blood vessels and
the Information-Enhanced Morphological (IEM) module combining vessel mor-
phology descriptions with the image features. From Table 4, we can conclude
that applying MBD and IEM independently can still improve the overall re-
sult by 6.4%, 2.92% in F1 score and 2.92%, 3.89% in AUPR. This proves that
both designs significantly enhance the model performance, and removing either
module would lead to decreased results.

Analysis of Vessel-Following Scanning Strategies. To demonstrate the in-
dispensability of our proposed Vessel-Following scanning strategy, we perform
linear scanning and diagonal scanning for comparison. Fig. 3 presents the av-
erage F1 score and AUPR metric of these different implementations. It can be
observed that other scanning methods show minimal contribution to perfor-
mance enhancement. This underscores the unique advantage of our approach in
extracting specific vascular features, which particularly aligns with the OCTA
imaging characteristics.

Generalizability of Vessel Shape Information. To prove the value of de-
scriptive vessel shape knowledge, we similarly integrate the IEM module into
other backbones and assess the impact. Fig. 4 shows that our IEM module brings
performance improvements regardless of the backbone architecture employed,
demonstrating the effectiveness of incorporating external knowledge about ves-
sel morphology. This suggests that leveraging vessel shape information as prior
knowledge would further enhance the OCTA-specific feature extraction process.

4 Conclusion

In this paper, we formulate a multi-task paradigm that simultaneously predicts
CVD risk and related blood conditions, substantially enhancing risk estimation
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accuracy and reliability. We introduce OCTA-CVD dataset, the first collection
of OCTA enface images for joint CVD risk and factor assessment, along with
a Vessel-Aware Mamba-based Prediction model with Informative Enhancement
(VAMPIRE). Our framework effectively concentrates on the vital vessel struc-
ture features within the OCTA images through two key components: a Mamba-
Based Directional (MBD) Module that extracts vessel trajectory features, and
an Information-Enhanced Morphological (IEM) Module that incorporates vessel
shape knowledge. These components collaboratively extract CVD-specific vessel
features from OCTA images, significantly improving CVD risk prediction and
factor estimation accuracy.
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