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Abstract. Histological images are essential in biomedical research and
diagnosis, extending beyond detailed cell and tissue morphology to pro-
vide an intuitive view of the cellular microenvironment and spatial re-
lationships. While single-cell gene expression data reveal molecular dis-
tinctions in cell states, their complexity obscures cellular interactions
and spatial organization. To overcome this, reconstructing histological
images from large-scale single-cell data is essential for intuitively visual-
izing spatial architecture. This paper proposes a single-cell-level histolog-
ical image generation method that derives cell state representations from
gene expression data using a single-cell foundation model. A conditional
diffusion model is leveraged to generate histological images, accurately
reconstructing the cellular microenvironment and spatial cell type dis-
tribution. By decoupling cellular state into two components, cell type
and microenvironment, we propose two complementary approaches for
generating pathology images, one conditioned on scRNA-seq data and
the other on cell type. Our approach successfully generates high-quality
histological images of human breast and colon cancer tissues, capturing
key spatial features such as cell density, compositional distribution, and
cell spacing within tissues.
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1 Introduction

The rapid progress in single-cell genomics has deepened our understanding of cel-
lular heterogeneity and tissue microenvironments. However, traditional scRNA-
seq techniques lose crucial spatial information when cells are dissociated from
their native tissue contexts, hampering our ability to fully grasp cell-cell inter-
actions and tissue dynamics [9, 23]. Spatial transcriptomics has emerged as a
powerful solution, preserving spatial context by measuring gene expression in
situ and revealing the complexity of cellular niches [10, 11, 14, 15, 22, 24, 25].
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A niche is the local microenvironment of a cell within a tissue, encompassing
its spatial location, surrounding cell types, and intercellular interactions. These
elements collectively shape cellular behavior and function. Studying niches is
crucial as it helps elucidate how cells are influenced by their surroundings. It
reveals the spatial heterogeneity of tissues and the dynamic interactions that
drive development, homeostasis, and disease. This understanding is vital for ad-
vancing regenerative medicine, improving disease diagnostics, and developing
targeted therapies. Histological imaging offers the most intuitive way to observe
cellular niches, and multimodal studies using paired histological images and gene
expression data have demonstrated significant potential in disease diagnosis [1, 4,
5, 7, 8] and cellular composition analysis [13]. However, the limited accessibility
of spatial transcriptomics technology poses a challenge in obtaining paired histo-
logical images and single-cell gene expression data. Consequently, reconstructing
histological images of cellular niches from gene expression data holds significant
potential for various applications.

Building on this, recent efforts to integrate single-cell and spatial data have
shown promise in inferring spatial features from gene expression. For exam-
ple, the Nicheformer model successfully demonstrated the feasibility of predict-
ing cellular niches from scRNA-seq data [20]. Yet, this method primarily yields
numerical results, lacking the intuitive visual insights provided by histological
images, which are essential for understanding cellular niches. Previous efforts,
such as RNA-GAN [2] and RNA-CDM [3], relied on bulk-level RNA sequencing
datasets from resources like the Genotype-Tissue Expression (GTEx) project
and the Cancer Genome Atlas (TCGA). These bulk datasets provide average
gene expression profiles across entire tissue samples, which can only capture
overall tissue characteristics and fail to represent the heterogeneity of individual
cells.

In contrast, this study introduces a novel method to generate histological
images of cellular niches from single-cell gene expression data obtained through
advanced preprocessing of subcellular-level spatial transcriptomic data from the
Visium HD library. Using a single-cell foundation model, we extract and decouple
cellular state information into cell type and environmental context. This enables
the development of two image-generation pathways via a conditional diffusion
model: one based on scRNA-seq data and the other on specific cell types. The
resulting images reflect gene expression patterns and reveal cell density and
neighborhood composition, providing an intuitive tool for studying the cellular
microenvironment. As an exploratory advancement in the field of cellular digital
twins, our method can precisely visualize how interventions, such as simulated
gene editing or drug perturbations, might reshape this cellular ecosystem. This
provides critical visual evidence for predicting cellular responses, holding the
potential to accelerate therapeutic development and reduce development costs.

The main contributions of this work are as follows:

1. A novel algorithm for generating histological images from single-cell gene
expression data has been developed, utilizing a conditional diffusion model
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to reconstruct cell morphology and surrounding environment from cellular
state information.

2. Cellular states in the latent space have been decomposed into two inde-
pendent variables, enabling the implementation of two distinct generation
methods to produce more diverse histological images on demand.

3. The proposed model produces the highest-quality images compared to other
approaches and demonstrates strong consistency with real spatial images,
particularly in terms of cell density, compositional distribution, and cell spac-
ing.

2 Method

We present GE2Hist, a model designed to generate histological images X from
single-cell gene expression data Y . The low-dimensional embedding E represents
the gene expression processed through the foundation model. {X0, . . . , XT } rep-
resent the noise images within the diffusion generation process, where X0 specifi-
cally refers to the final synthesized histological image. Since cell states are deter-
mined by cell types and their microenvironments, we introduce zc as the variable
that characterizes cell types, ze as the variable that represents the microenvi-
ronment of the cells, and zs as the variable that encapsulates the overall cellular
state.

2.1 scRNA-seq Embedding & Decoupling

The state of a cell is influenced by both its cell type and the surrounding mi-
croenvironment. To create more effective generative control conditions, we use
scGPT [6]—a single-cell foundation model trained on 33 million cells—to encode
RNA-seq data into a low-dimensional vector E. This process removes biases from
measurement techniques and external factors, enhancing the extraction of biolog-
ical features. Subsequently, two Variational Autoencoders are used to decouple
E into two independent latent variables representing cell type and microenvi-
ronment: q(zc|E) = N (zc;µc(E), σ2

c (E)), q(ze|E) = N (ze;µe(E), σ2
e(E)), where

µc, σ
2
c = Encoderc(E;ϕc) and µe, σ

2
e = Encodere(E;ϕe)

Then, to ensure proper decoupling of the two components, we applied distinct
constraints to ze and zc. To guide the accurate encoding of cell type information
in zc, we set a classifier using cross-entropy loss to categorize zc.

Lcls(ϕc, θcls) = − 1

N

N∑
i=1

C∑
j=1

yij log(ŷij) (1)

Where N is the number of samples, C is the number of classes, yij is the true label
(one-hot encoded from scGPT), and ŷij = Classifier(Encoderc(Ei;ϕc); θcls)j .
Additionally, we used KL divergence as a regularization term for ze, ensuring
a well-structured and interpretable latent representation that supports stable
training and effective data generation:

LKL(ϕe) = DKL(q(ze|E)||p(ze)). (2)
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Fig. 1. Overview of the GE2Hist model for generating histological images from single-
cell gene expression data. (a) Gene expression data from single-cell RNA sequencing
is embedded into a low-dimensional latent space using a foundation model. This rep-
resentation is then decoupled into cell type and microenvironment information. (b)
Conditional diffusion generation model for synthesizing histological images from cell
states.

Then, zc and ze will be merged into zs to indicate the cell’s state: zs = concat(zc, ze).
With the classifier’s guidance, zc is naturally clustered by cell type in the

feature space. We fit this distribution using a Gaussian mixture model. Based
on this Gaussian mixture model, we can sample zc from specific clusters, which
forms the basis for our generation conditioned on cell type. The prior distribution
p(ze) for the latent microenvironment variable ze is assumed to be a standard
normal distribution N(0, 1).

2.2 Conditional Diffusion

Diffusion models generate images by starting with random Gaussian noise and
progressively transforming it into a coherent image. This stochastic nature leads
to diverse outputs, but the generated images are often uncontrollable and may
not match our desired content. To tackle this challenge, many studies have pro-
posed effective strategies for controlling the image generation process [13, 16–19].
In this work, we focus on using cellular states to guide the diffusion model in
generating histological images.

This paper presents two methods for obtaining representations of cell types,
each tailored for different generation objectives:
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1. Generation conditioned on scRNA-seq: The vector zc is obtained directly
from the gene expression embedding of the cells, as illustrated by the solid
arrows in Fig. 1. This generation method is primarily used to restore cellular
morphology and the surrounding environment from gene expression data.

2. Generation conditioned on cell type: The vector zc is obtained by sampling
from the clusters corresponding to the specific cell type, as illustrated by the
dashed arrows in Fig. 1. This generation method enables independent ob-
servation of the effects of cell type and environment on cellular morphology,
facilitating a deeper understanding of cellular functions and interactions.

Equation (2) shows two different approaches,

zc =

{
fΦ(E) Generation conditioned on scRNA-seq
zc ∼ N

(
µc, σ

2
cI
)

Generation conditioned on cell type
(3)

Introducing control conditions does not affect the model’s forward diffusion,
which can be expressed in terms of conditional probability as follows,

p(XT | X0) =

∫ T∏
t=1

N (Xt;
√
αtXt−1, (1− αt)I) dX1 · · · dXT−1 (4)

Where αt is a pre-defined hyperparameter that controls the amount of noise
added at each diffusion step t.

The reverse generation process of the conditional diffusion model involves
modeling pθ(Xt−1|Xt, zs), and the reverse generation process can be described
as follows,

pθ(X1, X2, ..., XT | zs) = p(XT )

T∏
t=1

pθ(Xt−1|Xt, zs) (5)

The p(XT ) represents the distribution of the initial noise, which is typi-
cally assumed to be a standard normal distribution. The product notation de-
scribes the process of gradually generating the image X0 from the noise XT ,
pθ(Xt−1|Xt, zs) can be expressed as follows,

pθ(Xt−1|Xt, zs) = N
(
Xt−1;µθ(Xt, t, zs), Σθ(Xt, t, zs)

)
. (6)

In the conditional diffusion model, µθ(Xt, t, zs) represents the mean of Xt−1

given the current noise level Xt, the conditional information zs, and the time
step t. This mean is typically parameterized by a neural network ϵθ, commonly
called the noise prediction network.

µθ(Xt, t, zs) =
1

√
αt

(
Xt −

√
1− αtϵθ(Xt, t, zs)

)
. (7)

This noise prediction network ϵθ is typically implemented using a UNet ar-
chitecture. During model training, the optimization is achieved by minimizing
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Fig. 2. Histology image generation conditioned on scRNA-seq.GE2Hist model accu-
rately captured cell density, spatial composition, and cell type proportions in the gen-
erated histological images, showing high consistency with the ground truth.

the distance between the predicted noise ϵθ and the actual noise ϵt. The loss
function of our optimization objective LCDM can be expressed as follows,

LCDM =

T∑
t=1

EX0,ϵt

[
∥ϵθ(X0, t, zs)− ϵt∥22

]
. (8)

The total loss function Ltotal for the GE2Hist model can be derived from
equations (1)(2)(8),

Ltotal = LCDM + βLcls + γLKL. (9)

Where β and γ are the balancing coefficients to reconcile the three components,
the KL divergence constraint regularizes the latent space to follow a normal
distribution, ensuring a well-structured and interpretable latent representation
that supports stable training and effective data generation. The default values
for β and γ are set to 0.2 and 0.1.

3 Experiments

High-dimensional (>19k) RNA sequences are encoded into a structured 64D
latent vector, zs = [zc, ze], first via a foundation model for compression to 256D,
and then through a pre-trained VAE. Critically, the semantic decoupling of zc
and ze is not pre-learned but is instead enforced during the main training phase
of our diffusion model. This is achieved by jointly training the diffusion U-Net
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Table 1. Comparison of KID and LPIPS

Methods Data KID LPIPS

TransGAN Breast Cancer 0.3970 ± 0.0179 0.3331 ± 0.0350
Colon Cancer 0.5386 ± 0.0106 0.3731 ± 0.0345

RNA-CDM Breast Cancer 0.0466 ± 0.0126 0.1641 ± 0.0574
Colon Cancer 0.0576 ± 0.0147 0.1740 ± 0.0686

ours Breast Cancer 0.0164 ± 0.0137 0.1538 ± 0.0626
Colon Cancer 0.0286 ± 0.0156 0.1657 ± 0.0667

and a randomly initialized MLP classifier under a composite loss function that
includes cell-type classification, KL divergence, and denoising terms. Our U-Net,
which leverages ResNet blocks and cross-attention to condition on zs, is trained
with the Adam optimizer over 1000 diffusion steps using a cosine schedule.

3.1 Data Processing

In this study, we utilized human breast cancer and colon cancer samples from
the Visium HD Spatial Gene Expression Library. Visium HD provides high-
resolution H&E-stained images and gene expression data through high-density
barcode arrays, enabling precise localization of gene expression within tissue
sections [21]. Image segmentation was used to create nuclear masks, which were
then used for binning to assign barcodes to individual nuclei. After spatial verifi-
cation to filter out overlapping barcodes, UMI counts were summed to generate
a single-cell spatial expression matrix, reflecting the gene expression profiles of
individual cells.We used a foundation model to mitigate the highly imbalanced
cell counts across 9 types in breast cancer and 38 in colon cancer, with cell labels
provided by a pre-trained model.

3.2 Results

We conducted image-generation experiments using human breast and colon can-
cer tissues based on scRNA-seq data (Fig. 2). Our GE2Hist model accurately
captured cell density, spatial composition, and cell type proportions in the gen-
erated histological images, showing high consistency with the ground truth. Our
method infers the surrounding environment from the gene expression of a single
central cell, so while generated images may not match the ground truth ex-
actly, key metrics like cell density and spatial composition are well-preserved,
indicating accurate niche inference. Unlike TransGAN [12], which produced low-
quality and non-diverse images, and RNA-CDM [3], which showed discrepancies
in cellular niche structures, GE2Hist preserved key metrics and reflected cel-
lular states and microenvironments, highlighting its superior performance. We
quantitatively assessed our method’s performance using Kernel Inception Dis-
tance(KID) and Learned Perceptual Image Patch Similarity(LPIPS) metrics,
with results in Table 1.
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Fig. 3. GE2Hist accurately predicts neighborhood compositions for breast cancer(a)
and colon cancer(b) cells. The left panel demonstrates that the cell density in the
generated images closely matches the real images. The middle panel shows the KL
divergence between the cell type distributions of the generated and real images. The
right panel presents the mean nearest-neighbor distance differences in cell spacing.

Fig. 4. Histology image generation conditioned on cell type. By sampling zc, GE2Hist
can generate histological images with specified central cell types.

To further validate the accuracy of GE2Hist in predicting cellular niches, we
quantitatively assessed cell density, cell type distribution differences, and cell
spacing distribution differences(Fig 3). Cell density was determined by counting
the number of cells per unit area in each image. Cell type distribution differences
were evaluated by calculating the proportions of different cell types and compar-
ing the KL divergence between the generated and real distributions, with values
close to zero indicating consistency. Cell spacing distribution differences were
assessed by computing the nearest neighbor distances among cells, calculating
their mean and variance, and comparing these metrics between the generated
and real images, where values close to zero suggest spatial consistency.
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We evaluated the cell type classifier for zc in our model(Breast cancer classi-
fication accuracy: 92.31%; colon cancer: 87.93%). Breast cancer tissues had 9 cell
types, while colon cancer tissues had 38, making the latter’s classification met-
rics slightly lower. Guided by the classifier, we calculated the Gaussian mixture
distribution for zc and sampled from specific clusters to generate histological
images with specific cell types (Fig. 4).

4 Conclusion

This paper introduces a novel method to generate histological images of cellular
niches from single-cell gene expression data, leveraging a single-cell foundation
model and a conditional diffusion model. Through the decoupling of cellular
states, our method enables histological image generation from scRNA-seq data
and supports the generation of images with specified cell types. The generated
images exhibit high consistency with real images in terms of cell density, cell
type proportions, and cell spacing distribution, accurately depicting the spatial
context between cells. By enabling tissue reconstruction at single-cell resolution,
our approach allows pathologists to explore how cells respond to environmental
signals, promote tissue development, maintain homeostasis, and adapt to disease
states from a morphological perspective.
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