
Q-space Guided Collaborative Attention
Translation Network for Flexible

Diffusion-Weighted Images Synthesis

Pengli Zhu1, Yingji Fu1, Nanguang Chen3, and Anqi Qiu1,2,4(�)

1 Department of Health Technology and Informatics, Hong Kong Polytechnic
University, Hong Kong

2 Mental Health Research Center, The Hong Kong Polytechnic University, Hong Kong
an-qi.qiu@polyu.edu.hk

3 Department of Biomedical Engineering, National University of Singapore, Singapore
4 Department of Biomedical Engineering, The Johns Hopkins University, USA

Abstract. This study, we propose a novel Q-space Guided Collabora-
tive Attention Translation Networks (Q-CATN) for multi-shell, high-
angular resolution DWI (MS-HARDI) synthesis from flexible q-space
sampling, leveraging the commonly acquired structural MRI data. Q-
CATN employs a collaborative attention mechanism to effectively extract
complementary information from multiple modalities and dynamically
adjust its internal representations based on flexible q-space information,
eliminating the need for fixed sampling schemes. Additionally, we intro-
duce a range of task-specific constraints to preserve anatomical fidelity
in DWI, enabling Q-CATN to accurately learn the intrinsic relationships
between directional DWI signal distributions and q-space. Extensive ex-
periments on the Human Connectome Project (HCP) dataset demon-
strate that Q-CATN outperforms existing methods, including 1D-qDL,
2D-qDL, MESC-SD, and QGAN, in estimating parameter maps and fiber
tracts both quantitatively and qualitatively, while preserving fine-grained
details. Notably, its ability to accommodate flexible q-space sampling
highlights its potential as a promising toolkit for clinical and research ap-
plications. Our code is available at https://github.com/Idea89560041/Q-
CATN.

Keywords: DWI Synthesis · Conditional Generative Model · Collabo-
rative Attention Translation.

1 Introduction

Diffusion-weighted imaging (DWI) is a key non-invasive method for evaluating
brain microstructure and connectivity, providing critical insights into develop-
ment, aging, and neurodegenerative diseases. Advanced models like neurite ori-
entation dispersion and density imaging (NODDI) [24] and diffusion kurtosis
imaging (DKI) [10] offer superior tissue microstructure analysis over conven-
tional diffusion tensor imaging (DTI). However, these methods require exten-
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sive q-space sampling, longer acquisition times, and complex computational pro-
cesses, increasing susceptibility to motion artifacts, eddy current distortions, and
physiological noise, which can affect their quantitative precision.

Recent advances in deep learning have shown promise in medical image syn-
thesis, with several studies [1, 13, 20] estimating parameter maps from DWI using
limited gradient directions. Q-space deep learning (qDL) [6] pioneered the direct
mapping of sparsely sampled q-space DWI signals to microstructural parameters
via a multilayer perceptron. Subsequent enhancements integrated 2D spatial in-
formation [5] and 3D sparse spatial patch representations with modified LSTM
networks [21]. However, these methods are limited to generating fixed parameter
maps, restricting their applicability to variably sampled DWI data. Thus, a more
flexible DWI synthesis approach is needed to broaden its practical utility.

According to the principles of DWI, its generation involves a complex nonlin-
ear relationship in q-space [12], making conditional generative adversarial net-
works (cGANs) [9, 11] well-suited for DWI synthesis. Recent studies have shown
their effectiveness in producing high-fidelity medical images, such as translat-
ing structural/functional MRI into DWI [16] and generating DWI-derived scalar
maps [7]. Complementary modalities like T1- and T2-weighted MRI have also
been shown to improve DWI synthesis [14, 2]. However, existing methods are typ-
ically optimized for fixed q-space sampling aligned with their training datasets,
limiting their applicability in clinical settings where heterogeneous sampling is
common and site-specific data is often insufficient for training models. This high-
lights the need for a flexible DWI synthesis approach not constrained by prede-
fined sampling strategies. While q-space cGANs such as Q-GAN [14] and aqDL
[26] offer promising solutions by enabling DWI generation at arbitrary q-space
points, they often rely on oversimplified input representations or fail to effec-
tively capture inter-modality correlations, limiting their ability to fully utilize
complementary information and constraining their generative performance.

To overcome the above limitations, we propose a novel q-space guided collab-
orative attention translation networks (Q-CATN), for multi-shell, high-angular
resolution DWI (MS-HARDI) synthesis with flexible q-space sampling using
commonly acquired structural MRI. The main features are outlined as follows:

1. The proposed Q-CATN framework supports MS-HARDI synthesis by incor-
porating flexible q-space conditional information, overcoming the limitations
of fixed sampling strategies commonly seen in existing approaches;

2. By introducing a collaborative attention mechanism, Q-CATN effectively ex-
tracts compatible information from single modality and complementary in-
formation across multi-modal inputs (e.g., b0, T1- and T2-weighted images),
enhancing synthesis accuracy and robustness;

3. The proposed framework enables the generation of densely sampled q-space
data, facilitating the reconstruction of various diffusion models, which sig-
nificantly benefit downstream applications.



Q-CATN 3

2 Methodology

2.1 Overall Architecture

Fig. 1 presents the Q-CATN framework, comprising a single-modal attention
(SMA) encoder, a multi-modal attention fusion (MMAF) module, a q-space em-
bedding module, a SMA decoder, and a conditional discriminator. Q-CATN
takes xb0, xt1, and xt2 as input, representing b0, T1-, and T2-weighted images,
respectively. These are processed by SMA encoders to extract latent-space fea-
tures (zb0, zt1, zt2). The MMAF module integrates these features into unified
representation z, conditioned on q-space coordinates

→
q = (gx, gy, gz, b), which

define the b-vector and b-value. The q-space embedding module plays a crucial
role in transforming z into zbn using

→
q , facilitating flexible q-space-aware rep-

resentation learning. The SMA decoder reconstructs zbn into the image domain
as xbn under ground-truth supervision. Meanwhile, a discriminator is trained to
distinguish synthesized from real DWIs. Further details are provided below.
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Fig. 1. Overview of Q-CATN. Panel (A) illustrates the high-level structure of the
model. Panel (B) details the architecture of the single-modal attention module. Panel
(C) shows the multi-modal attention fusion mechanism. Panel (D) outlines the struc-
ture of the conditional discriminator.

2.2 Collaborative Attention Mechanism

To enable the generation of precise and realistic DWI outputs, the proposed Q-
CATN model employs a collaborative attention mechanism to effectively extract
and integrate compatible-complementary information from multiple modalities.
This architecture comprises two key components:
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SMA Encoder To improve multi-modal MRI synthesis, it is essential for each
modality to provide sufficient and complementary information. We introduce
a SMA encoder to extract more compatible features zn across three encoder
branches, computed as: zn = Gencn (xn)+G

enc
n (xn)⊗δ (Gencn (xn)), where Gencn (·)

denotes feature maps from the n-th SMA encoder, ⊗ represents channel-wise
multiplication between feature maps and vector, and δ(·) is an attention met-
ric for DWI modality information. The SMA mechanism assigns a weight vec-
tor to each modality, emphasizing specific channels. These weighted features
are combined with the input to yield an enhanced single-modal representation
zn: {zb0, zt1, zt2}. Here, Gencn (·) employs strided convolutions for downsampling,
while δ(·) is implemented via global average pooling followed by two fully con-
nected (FC) layers with ReLU and Sigmoid activations, respectively.

MMAF Module To effectively integrate DWI-specific information from mul-
tiple modalities within the collaborative attention mechanism, we introduce the
MMAF module, as depicted in Fig. 1(C). Specifically, the input modality fea-
tures are concatenated and processed through FC layers to compute the atten-
tion matrix A. This matrix is then used to weight the features via channel-wise
multiplication. The resulting weighted features are combined to form a multi-
modal feature, which is added to each input feature to produce modality-specific
features zatt

n . The multi-modal attention determines the weights A for the cross-
modal feature channels as follows: A = Gm (ψ (η ((zb0, zt1, zt2)ω1)ω2)), where
ω1 and ω2 are mapping matrices implemented by two FC layers, while η and
ψ denote ReLU and Sigmoid activations, respectively. The function Gm applies
softmax across each row of A, ensuring each row represents modality weights for
a specific pattern, and each column represents a modality’s weights across all
patterns. The matrix A is then used to extract correlated information from the
multi-modal data, yielding the complementary feature zatt

n for the n-th modal-
ity: zatt

n = zn +
∑3
n=1 (zn ⊗An), where An denotes the n-th column of A. The

final fused feature z is obtained by combining these modality-specific features.

2.3 Q-space Embedding Module

To address the limitations imposed by predefined sampling strategies, we propose
a flexible DWI synthesis approach enabling the generation of zbn for any given
variable

→
q . Inspired by affine transformation parameters in normalization layers

to encode attributes, we introduce central biasing instance normalization (CBIN)
[23] into the residual blocks, which are dynamically modulated by the q-space
coordinates. The operation is defined as follows: CBIN (z, q̂) = z−µ(z)

σ(z) + br(q̂),
where z denotes the feature map from the previous convolution, q̂ is the q-space
embedding code, µ and σ are the instance mean and standard deviation, and br
is the bias for the r-th feature map. Finally, the SMA decoder is used to precisely
reconstruct zbn back to the direction-specific image xbn.
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2.4 Q-space Conditional Discriminator

To improve the realism of the synthesized DWI, we employ a q-space conditional
discriminator with two levels: its bottleneck layer assesses global image realism,
while the output layer evaluates pixel-level fidelity, as illustrated in Fig. 1(D).
Specifically, the discriminator processes xbn, extracting a global representation
via its encoding path to evaluate global realism. Meanwhile, a decoder expands
the output to match the input size, enabling per-pixel realism feedback. The q-
space coordinates are integrated via conditional projection before the final layers
of both branches. The final layer is defined as f(xd,

→
q) := (

→
q)TV γ(xd)+ξ(γ(xd)),

where V denotes a learnable embedding of
→
q , γ(xd) represents the output prior

to conditioning, and ξ(·) is a scalar function applied to γ(xd).

2.5 Loss Function

Adversarial Loss To enhance the realism of the synthetic DWI both locally and
globally, we introduce adversarial losses for the encoder and decoder to achieve
superior outcomes. The adversarial loss L(∗)

adv is defined as:

L(∗)
adv = E

[
log
(
1−D(∗)(ybn,

→
q)
)]

+ E
[
logD(∗)(xbn,

→
q)
]
, (1)

where (∗) denotes either the encoder and decoder of the discriminator, respec-
tively. xbn is the synthesized DWI conditioning on the variable

→
q , and ybn rep-

resents the real tuple with
→
q sampled from the training data.

Reconstruction Loss To better align low-frequency details and ensure consis-
tency with the input, we further introduce a reconstruction loss Lrec as below:

Lrec =

{
E [‖xbn − x∗

bn‖1] , if b > 0

E [‖xbn − xb0‖1] , if b = 0
(2)

where x∗
bn is the reference DWI with targeted q-space coordinates

→
q .

Anatomical Consistency Loss To ensure the synthesized DWI accurately
reflects the underlying tissue microstructure, we employ a spatially-correlative
loss [25] to preserve image structure. The anatomical features of DWI are ex-
tracted using a VGG16 network, and self-similarity is computed as a map:
Lac = ‖Gac (xbn)−Gac (x∗

bn)‖1, where Gac(xi) = (fxi
)T (fx∗), fTxi

represents
the feature of a query point xi, fx∗ denotes the features associated with patch,
whileGac(xi) captures the anatomical correlation between different query points.
Overall Loss Function To summarize, the overall loss function for Q-CATN
can be expressed as: L = Ladv + λrecLrec + λacLac, where λrec and λac are loss
weights used to adjust the relative importance of each term.

2.6 Implementation

Dataset We conducted experiments using preprocessed data from the Human
Connectome Project (HCP) release1[18]. Skull stripping was performed using
1 https://www.humanconnectome.org/
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brain masks, and T1- and T2-weighted images were resampled to b0 resolution,
followed by image registration with DPABI [19]. The training set included 20
subjects (5400 DWIs), while 30 subjects were reserved for testing. Training data
comprised 2D axial slices sampled from random directions, with DWI intensities
normalized using the corresponding b0 and b-values scaled by their maximum.
Training and Inference Q-CATN is trained using b0, T1, and T2 images
as inputs, with diverse q-space coordinates integrated into latent features. The
model generates the target DWI, while a discriminator enhances realism by
distinguishing synthetic from real DWI. Optimization is performed using loss
functions until convergence. During the inference, b0, T1-, T2-weighted images,
and flexible q-space conditions are used to synthesize MS-HARDI.
Optimization We implemented Q-CATN using Python 3.8 and PyTorch 1.13.0.
During the training, we set the loss weights λrec and λac to 100 and updated
the discriminator every two generator updates. The model was trained on four
NVIDIA A100 GPUs using the ADAM optimizer with a mini-batch size of 128.
The initial learning rates for the generator and discriminator were set to 1×10−4

and 5×10−5, respectively, and reduced by a factor of 0.95 after each epoch. The
training process was conducted for a maximum of 300 epochs.

3 Experimental Results

To evaluate the performance of Q-CATN, we conducted comparative experi-
ments with benchmark models. Specifically, 1D-qDL [6], 2D-qDL [5], and MESC-
SD [21] were limited to generating specific parameter maps from undersampled
DWI data (using 30 fixed-direction data by default), while QGAN [14] and
Q-CATN employed the sphere2cart function from DIPY [4] to flexibly sim-
ulate dense q-space sampling (270 directional data) for downstream evaluation.
Ground truth in all experiments was derived from the complete testing subject.

3.1 Qualitative Analysis

We conducted DWI synthesis experiments across varying b-values, as illustrated
in Fig. 2. From the zoom-in perspective, Q-CATN preserves fine anatomical
structures, yielding results consistent with the ground-truth. We further eval-
uated against comparison methods for estimating parameter maps, perform-
ing diffusion imaging using DIPY [4] for DTI (using only b=1000 s/mm2) and
DKI, while fitting the NODDI model using AMICO [3]. As shown in Fig. 3,
1D-qDL fails to yield feasible results due to its reliance on predefined down-
sampling scheme and 2D-qDL exhibited notable inaccuracies in structural de-
tail prediction. Although MESC-SD and Q-GAN demonstrated improved perfor-
mance, anatomical details remained unclear upon closer inspection. In contrast,
Q-CATN generated dense DWIs, producing parameter maps that closely align
with the ground truth, surpassing all other methods.
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Fig. 2. DWI synthesis re-
sults under different b-
values configurations. On
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put channels (b0, T1, T2)
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Fig. 3. Qualitative com-
parison of different meth-
ods for undersampling
DWI parameter fitting.
The first six columns
show the various diffusion
maps and the last column
is the ODI error map,
each row represents differ-
ent comparison methods,
with the reference map at
the bottom.

3.2 Quantitative Analysis

To quantitatively assess the effectiveness in parameter fitting, we utilized sev-
eral image quality metrics, including root mean square error (RMSE), multi-
scale structural similarity index (MS-SSIM), peak signal-to-noise ratio (PSNR)
and Learned Perceptual Image Patch Similarity (LPIPS). Except for RMSE and
LPIPS, higher values denote better performance. Fig. 4 summarizes the quantita-
tive comparison of estimated diffusion maps, Q-CATN consistently surpasses all
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baseline models across four metrics, demonstrating its superior ability to adapt
to proposed collaborative attention and flexible q-space sampling schemes.

3.3 FOD and Tractography

To evaluate downstream performance beyond parameter fitting, we performed
fiber orientation distribution (FOD) using MRtrix3 [17] and FSL [15], alongside
tractography using DSI-Studio [22]. Fig. 5 shows that the fiber tracts generated
from undersampled data exhibit the poorest quality, whereas those produced
by Q-GAN better preserve continuity and integrity, and our results align more
closely with the ground truth. These findings demonstrate that Q-CATN reliably
and accurately represents underlying fiber structures in downstream analyses.



Q-CATN 9

4 Conclusion

This study introduces a novel q-space guided collaborative attention translation
network (Q-CATN) for MS-HARDI synthesis from flexible q-space sampling.
Leveraging a collaborative attention mechanism, Q-CATN extracts complemen-
tary information from multiple modalities and modulates internal representa-
tions with flexible q-space conditions, addressing the limitations of fixed sampling
strategies. Extensive experiments show that Q-CATN surpasses existing meth-
ods in synthesizing parameter maps and fiber tracts with fine-grained details,
highlighting its potential for advancing diffusion applications. Notably, while
recent diffusion models [8] have shown impressive capabilities in generating im-
ages, Q-CATN was chosen for its superior computational efficiency and faster
inference times, crucial for real-time clinical applications.
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