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Abstract. Accurate segmentation of 3D tooth point clouds from in-
traoral scanner (IOS) data is crucial for orthodontic applications. While
current methods show promise, their reliance on high-quality labeled
datasets is limited due to costly annotation processes, which further
constrain their practical generalizability. We address this challenge with
STEAM, a self-supervised learning framework that learns comprehensive
features from large-scale unlabeled tooth point clouds. Built upon the
masked autoencoder, our framework incorporates two key innovations:
Gradient-guided Adaptive Masking (GAM), which adaptively identifies
and prioritizes challenging regions by analyzing local feature variations
during the training process, and Multi-attribute Geometric Reconstruc-
tion (MGR), which reconstructs multiple geometric attributes including
point distributions, normals, and curvatures to capture geometric fea-
tures of different granularity. Through extensive experiments on pub-
lic datasets, our approach demonstrates superior performance in down-
stream segmentation tasks with minimal labeled data, achieving signifi-
cant improvements over existing methods. The results validate STEAM
effectiveness in maximizing the utility of limited labeled data for practi-
cal dental applications.

Keywords: Self-supervised Learning - 3D Tooth Segmentation - Point
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1 Introduction

Recent advances in computer-aided-design (CAD) have established the Intra-
Oral Scanner (IOS) [26] as a cornerstone technology in digital dentistry, en-
abling rapid 3D surface reconstruction for various clinical applications, includ-
ing clear aligner design, dental restoration, and aesthetic smile enhancement.
Precise tooth segmentation serves as a critical foundational step for these appli-
cations [I2JI7]. Due to the substantial point cloud data generated by IOS, typ-
ically comprising approximately 100,000 points per scan, manual segmentation
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remains prohibitively resource-intensive [9]. This urgently requires automated,
high-precision 3D tooth segmentation solutions in clinical practice.

Deep learning has revolutionized 3D tooth segmentation with numerous pio-
neering approaches [27124IT3I619123|16], advancing both local feature extraction
capabilities and specialized architectural designs. Despite these innovations, the
reliance on limited annotated datasets constrains their clinical applicability, par-
ticularly in generalizing to diverse 3D scans. While expanding annotation cov-
erage [923] offers partial improvement, the substantial costs and effort required
for manual labeling remain prohibitive. Given the abundant availability of unla-
beled 3D scans, self-supervised pre-training emerges as a promising solution to
enhance model generalization efficiently. Self-supervised pre-training has demon-
strated remarkable success across multiple domains, from natural language pro-
cessing [7I2113] to computer vision [AITITOI] and 3D understanding [28/1825].
Notably, the masked autoencoder (MAE) paradigm [IJI0/I8] has proven partic-
ularly effective for large-scale applications. This approach strategically masks
high proportions of input patches and leverages Transformer architectures [§]
to reconstruct masked regions, enabling robust feature learning from unmasked
contexts. The knowledge encoded during large-scale pre-training significantly
enhances downstream task performance through fine-tuning, offering a powerful
foundation for specialized applications.

Nevertheless, it is non-trivial to apply general MAE methods [25/18/T4] di-
rectly on the tooth point cloud, caused by two primary challenges. First, dental
scans predominantly consist of gingival points, causing random masking strate-
gies to select gingival patches frequently. These patches, characterized by flat
surfaces, provide minimal geometric information during reconstruction, limiting
meaningful feature learning for encoders. This necessitates a selective masking
strategy targeting geometrically complex regions, and also progressively adjusts
the selection criteria along the learning process. Second, existing point cloud
MAEs focus primarily on reconstructing basic spatial distributions of masked
regions, i.e. point clouds. While this captures coarse morphological features,
downstream tasks like dental segmentation require geometry attributes with dif-
ferent granularity for precise boundary delineation. Therefore, reconstruction
targets incorporating diverse geometric properties need to be developed.

To tackle these challenges, we propose STEAM, a Self-supervised TEeth
Analysis and Modeling framework for point cloud segmentation. Our frame-
work introduces two innovative components: Gradient-guided Adaptive Masking
(GAM) and Multi-attribute Geometric Reconstruction (MGR), designed to effec-
tively mask challenging regions and reconstruct them with multiple geometric
attributes. The main contributions can be summarized as follows: (1) We de-
velop an adaptive masking mechanism where a teacher network assesses patch
feature gradients to identify challenging regions, guiding the student network to
focus on reconstructing these informative patches for more meaningful feature
learning. (2) We design multiple specialized decoders to reconstruct diverse geo-
metric attributes, including point distributions, surface normals, and curvatures,
enabling the encoder to capture fine-grained surface characteristics at different
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Fig. 1. Illustration of the proposed STEAM framework, including a) Gradient-guided
Adaptive Masking and b) Multi-attribute Geometry Reconstruction.

granularities. (3) We validate our approach through extensive experiments on
large-scale unlabeled dental scans for pre-training. Further fine-tuning experi-
ments on public datasets demonstrate that STEAM significantly outperforms
existing methods with minimal labeled data, providing a practical solution for
clinical tooth segmentation applications.

2 Method

Our framework is designed for self-supervised learning for tooth point cloud
analysis, by leveraging the scalable MAE (Sec. . As shown in Fig. |1} it be-
gins with the Gradient-guided Adaptive Masking to represent the input point
cloud as groups of patches and adaptively mask the informative patches based
on the gradients of the teacher network (Sec. [2.2)). Then, Multi-attribute Geom-
etry Reconstruction is used to facilitate feature learning by reconstructing the
masked geometry attributes with different granularity, including point distribu-
tion, normals, and curvatures (Sec. . After that, the pre-trained encoder is
equipped with a segmentation decoder for the downstream tooth point cloud
segmentation, optimized by the segmentation constraints (Sec. .

2.1 Preliminaries of Masked Modeling

MAE [IUTO/I8] aims to learn the latent features by reconstructing the masked
signals. For the point cloud input, mainstream frameworks [25JI8/14] typically
utilize the Farthest Point Sampling (FPS) algorithm to sample patch centers, and
search for corresponding nearest neighbors to compose patches. Then, a large
ratio of the patches are randomly masked and the remaining unmasked ones
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are tokenized by PointNet [I9] and passed to a standard Transformer encoder
[8], encoding high-level latent features. After that, these unmasked features are
fed to a lightweight decoder, reconstructing the rough point distributions of the
masked patches. This procedure enforces the encoder to encode meaningful shape
representations, which can benefit the downstream tasks.

2.2 Gradient-guided Adaptive Masking

The random masking strategy used in existing MAEs [25/I8/14] would mask a
large portion of simple patches, caused by the huge number of gingiva points
(around 40% of the tooth point cloud). As reconstructing such simple patches
can not fully push the encoder to learn meaningful features, we propose to design
a gradient-guided strategy to evaluate the reconstruction difficulty of each patch,
and priorly reconstruct the patches with larger gradients. In doing so, the encoder
is forced to extract informative features for reconstructing hard patches.

In particular, given input point cloud P € RN¥*3 composed of N points, we
first use the Farthest Point Sampling (FPS) and K-Nearest Neighbors (KNN) al-
gorithms to get grouped patches G = {g1, g2, ..., gar } € RM>*3K where g; € R3K
refers to the i-th patch containing K points. Then, we do not mask patches and
instead feed all patches to a frozen teacher network that shares parameters with
the student network, obtaining the reconstruction loss L,... After that, to eval-
uate the reconstruction difficulty of each patch g;, we compute the gradients
of L. back-propagated to each patch g;, obtaining ‘%T“ . Considering patches
that are harder to reconstruct would possess larger gradlents we select patches
with the top-k gradients as the masked patches G,, € RY=*3K and the re-
maining ones are treated as unmasked G, € RN«*3K_ The process is formulated
as:

8£7'€C aLT@C a‘CT'CC
og ’ g2 T Ognmr

G = {gi|8§;_ec € TopK( 4Gy =G/Gr. (1)
K3

It is worth noting that at the beginning of the training period, the teacher
network shared from the student network can hardly reconstruct any patches,
thus the patches are similarly difficult and the above masking strategy behaves
more like random masking. With the training going on, the student network can
learn latent features to reconstruct simple patches, the gradients derived from
the teacher network would reflect the reconstruction difficulty reasonably, thus
the masking strategy can mask harder patches, as we expected.

2.3 Multi-attribute Geometry Reconstruction

Existing MAE frameworks for point clouds [25|I8T4] primarily focus on recon-
structing point distribution alone, which limits the encoder to learning coarse
geometric representations. However, in dental applications, accurate tooth iden-
tification requires the encoder to capture more fine-grained geometric character-
istics, as different teeth often exhibit subtle variations in their surface properties
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such as normals and curvatures. To address this limitation, we propose a Multi-
attribute Geometric Reconstruction strategy that jointly reconstructs both point
distribution and surface properties.

Point Distribution Reconstruction Following the patch generation process
described in Sec. we obtain unmasked patches G, € R™*3K and masked
patches G,,, where N, denotes the number of unmasked patches. The unmasked
patches are processed through a standard Transformer encoder to obtain latent
features F, € RN«*P where D represents the feature dimension. Subsequently,
inspired by [I0/18], we employ a lightweight decoder that takes the encoded
features F, and randomly initialized masked tokens T}, € RN=*P as input,
where N, represents the number of masked patches. The decoder generates
the predicted point distribution G,, for the masked patches. The prediction is
optimized using the chamfer distance loss:

Epoint = Z mqn ||.’E - y||§ + Z ;761(2;71 ||£L’ - yH% (2)

TEG, YEUm zeGpm

The reconstruction of point distribution enables the encoder to capture coarse
geometric representations, which serve as essential features for the downstream
segmentation task. Beyond point distribution, we further incorporate the recon-
struction of surface properties below.

Surface Properties Reconstruction To provide more fine-grained surface
constraints, we further add a lightweight decoder to reconstruct the surface
properties of each patch, including normals N' = {fy, g, ..., iy, } € RVm*3
and curvatures C = {é1, 69, ..., ¢n,, } € RVm of the masked patch centers: N,C=
Decoder(F,,Ty). To impose constraints on the reconstructed surface proper-
ties, we extract the normals N and curvatures C from the input I0S mesh using
the algorithm in [5] as the ground truth, and design different losses for the nor-
mals and curvatures. For normals, we expect the predicted normal vectors to be
aligned with ground truth, thus a cosine distance loss is used:

1 I n; - 1
Lnorm = (1 - : Al . (3)
N ; [Iril 2|72 ]2

For the curvature, we first use the Sigmoid function to re-scale the curvature
range into [0, 1] for numeral stability, and then use the MSE loss to measure the

difference:
N,

> " [|Sigmoid(c;) — Sigmoid(é;)|3. (4)

i=1

1
N,

»Ccurv =

In summary, the total loss includes point distribution constraints, normal vector
constraints, and curvature scalar constraints:

‘Crec = A1 £point + )\2£no7'm + )\3£cu7'v; (5)



6 Y, Liu et al.

where \1.3 are balancing weights. By optimizing the network with multiple tar-
gets, the encoder is encouraged to learn both the coarse point distribution and
fine-grained surface properties, which can further benefit the downstream seg-
mentation task.

2.4 Point Cloud Segmentation with Fine-tuning

The pre-trained encoder is further fine-tuned in a supervised manner for the
downstream segmentation task. To obtain point-wise predictions, a randomly
initialized decoder and a segmentation head are added after the pre-trained
encoder for the feature propagation, as in previous works [25/18]. During the fine-
tuning period, the parameters of the pre-trained encoder serve as the initialized
weights for the segmentation encoder, and the whole framework is optimized by
the segmentation loss Lgcq:

Eseg = IE(z,y)w(X,Y) [_y : lOgF(J?)], (6)

where X and Y are the input and ground truth set respectively, and F' is the
fine-tuned segmentation model. During inference, not all points of the input
mesh are passed to the network due to GPU memory constraints. Instead, we
follow the approach used in previous research [I7] and randomly sample 16,000
points. A KNN-based voting method is then employed to generate predictions
for all vertices of the mesh.

3 Experiments

3.1 Experiment settings

Datasets and evaluation For self-supervised pre-training, we collected a large-
scale IOS scan dataset comprising 6,000 unlabeled 3D scans of diverse tooth
morphologies from patients in Hong Kong, China. For supervised fine-tuning,
we employed the publicly available 3DTeethSeg dataset 2], containing 1,800
labeled lower and upper 3D I0S scans. Following [2], we split the fine-tuning
dataset into three subsets: 1,000 samples for training, 200 for validation, and
600 for testing. All teeth were identified using the ISO-3950 notation system. To
comprehensively evaluate both existing methods and our approach, we adopted
three widely-used segmentation metrics: the Jaccard Index (mloU), the Dice
Similarity Coefficient (DSC), and the point-wise classification accuracy (Acc).
All metrics were computed using standard definitions, with higher values indi-
cating better performance.

Implementation details In self-supervised pre-training, we randomly sam-
ple N=16,000 points from each input 3D IOS scan and organize them into
M=1,024 patches, each containing K =64 points, with 90% of patches randomly
masked. The balancing factors A1, A, and A3 are empirically set to 1.0, 0.1, and
0.001 based on validation results. For supervised fine-tuning, we maintain the
same patch configuration (M=1,024) but without masking. Both stages utilize
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Table 1. Results obtained by different approaches. { denotes methods pre-trained with
the large-scale dataset. The top two results are marked as bold and underlined.

Methods Maxillary Mandible All

Acc(%) mloU(%) DSC(%)|Acc(%) mloU(%) DSC(%)|Acc(%) mloU(%) DSC(%)

Supervised
PointNet+-+[20] | 86.56 77.55 85.21 | 82.55 75.23 82.52 | 84.54 76.02 83.52
DGCNNI[22] 88.68 78.38 86.23 | 84.64 74.34 84.28 | 86.79 76.24 85.78
MeshSegNet[13] | 88.25 79.64 87.14 | 85.62 76.93 85.79 | 86.29 78.30 86.12
DC-Net [9] 92.74 84.60 87.37 | 87.82 77.11 86.81 | 89.58 80.25 86.53
GRAB-Net[15] | 92.86 86.13 90.53 | 89.15 82.62 88.70 | 91.61 83.79 89.30
Transformer|25] | 92.53 85.87 90.28 | 89.69  81.89 87.85 | 91.11 83.38 89.07

Self-supervised
STSNet[17] 92.45 85.56 90.26 | 90.56  82.56 89.02 | 91.42 83.73 89.64
PointBERTT [25] | 91.84 85.47 88.14 | 89.71 81.52 88.29 | 90.87 82.36 88.63
PointMAET[18] | 93.88 86.49 90.12 | 90.36 83.38 89.31 | 91.71 83.95 90.15
Ours’ 95.19 88.36 93.24 | 92.95 86.35 91.61 | 94.07 87.35 92.42

Ours w/o GAM | 94.37 87.93 91.39 | 90.92 84.93 90.22 | 92.78 85.12 90.82
Ours w/o MGR | 94.67 87.55 92.43 | 91.38 85.56 90.53 | 92.44 86.35 91.57

AdamW optimizer with an initial learning rate of 5e~* that decays to 5e~2 fol-
lowing cosine annealing. We employ a batch size of 2 and train for 100 and 200
epochs during pre-training and fine-tuning, respectively.

3.2 Main results

To demonstrate the effectiveness of our proposed method, we conducted com-
prehensive comparisons with several state-of-the-art segmentation approaches,
including PointNet++ [20], DGCNN [22], MeshSegNet [13], DC-Net [9], and
GRAB-Net [I5]. The experimental results are presented in Table [I} where meth-
ods pre-trained on the large-scale dataset are denoted with . Notably, our
STEAM' achieves substantial improvements over its supervised counterpart
Transformer [25], with gains of 2.96% in Acc and 3.97% in mloU, validating the
effectiveness of our pre-training strategy. Furthermore, our method outperforms
the current state-of-the-art supervised method, GRAB-Net [15], by significant
margins of 2.46% and 3.56% in Acc and mloU, respectively. These remarkable
results demonstrate that a vanilla transformer architecture, when properly pre-
trained on large-scale data, can achieve superior performance without requiring
sophisticated architectural designs or complex modifications.

Moreover, we compare our method with other self-supervised pre-training ap-
proaches, including the contrastive pre-training framework STSNet [I7] specifi-
cally designed for tooth point cloud, and several generative pre-training methods
designed for general point clouds, including PointBERT [25] and PointMAE [I§].
For a fair comparison, all methods (except STSNet which uses customized data
augmentations) employ identical augmentation techniques and the same Trans-
former [25] backbone. Following the setting described in Section [2.4] we transfer
the pre-trained transformer encoder to the downstream segmentation task. As
shown in Table |1, our STEAM outperforms the best-performing pre-training
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STS-Net PointMAE STEAM (ours) Ground-truth

Fig. 2. Illustration of the segmentation results of previous works and ours.

method PointMAET by 2.36% in Acc and 3.40% in mIoU, demonstrating su-
perior knowledge learning from unlabeled tooth point clouds. Visual results in
Fig. 1| show that compared to GRAB-Net [I5] and other pre-training methods
[T7018], STEAM' achieves better segmentation with clearer boundaries and can
correctly identify teeth with similar shapes but different categories (black boxes

in Fig. .

3.3 Ablation study

To thoroughly evaluate our proposed designs, we conducted extensive ablation
studies as presented in Table [I] The results demonstrate that STEAM substan-
tially outperforms the baseline PointMAE, achieving a 3.40% improvement in
mloU, which indicates its superior representation learning capability for down-
stream fine-tuning. To analyze the individual contributions of GAM and MGR,
we conducted ablation experiments by removing each component. Results show
that removing GAM leads to performance degradation of 1.29%, 2.23%, and
1.60% in Acc, mIoU, and DSC respectively, validating the effectiveness of hard
patch selection for reconstruction. Similarly, the absence of MGR results in per-
formance drops of 1.63%, 1.00%, and 0.85% in Acc, mIoU, and DSC, suggesting
that reconstructing additional properties like surface geometries through MGR
contributes positively to downstream performance.

4 Conclusion

In this paper, we present STEAM, the first masked pre-training framework for
tooth point cloud segmentation, which leverages large-scale unlabeled data to
reduce the dependency on labor-intensive annotations while improving model
generalizability. To address the limitations of random masking and simple re-
construction targets in existing pre-training methods, we introduce GAM for
selective hard patch reconstruction and MGR for multi-attribute geometry re-
construction. Extensive experimental results validate the effectiveness of our
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framework and its individual components, offering a promising solution for prac-
tical tooth segmentation with large-scale datasets.
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