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Abstract. Accurate vessel segmentation is critical for diagnosis. How-
ever, the annotation of vascular images cost a lot, and due to their
diverse modalities and complex foreground structures, it is hard for
learning-based methods to reduce annotation cost by training models
of high domain generalization (DG) on partial modalities. To address
this, we propose the Image-Sparse Annotation Completion (ISAC) seg-
mentation model, which reformulates vascular segmentation as a mask
completion task based on sparse-annotated supports. ISAC treats the
segmentation task as incomplete mask reconstruction guided by im-
age features and structural properties of the foreground in the sparse
mask. Unlike pixel-wise classification, ISAC detects vessels according
to the mask context supported regions, in which way the anatomical
continuity of vascular foreground is improved. Additionally, to further
avoid the reliance on high-cost manually annotated supports, we pro-
pose the Uncertainty-guided Patch Selection (UPS) module to extract
high-quality supports from coarse pseudo labels, which enables ISAC
to perform segmentation in zero-shot scenarios. Experiments on 7 vas-
cular datasets across 3 modalities demonstrate that ISAC outperforms
state-of-the-art methods in DG ability. The code is publicly available at
https://github.com/Architect15806 /ISAC.

Keywords: Vascular Segmentation - Mask Completion - Domain Gen-
eralization.

1 Introduction

Accurate vessel segmentation is important in the diagnosis [21], such as detecting
diabetic retinopathy in fundus images [2] or identifying coronary artery stenosis
in X-ray coronary angiography images [20]. Learning-based models, as data-
driven approaches, face challenges in training with diverse data due to various
modalities and the high cost of manual annotation [§]. Thus, when confronted
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Fig. 1: Tllustration of the proposed methods. (Left) The architecture of the pro-
posed ISAC. (Right) The workflow of UPS. Patches in PSA with light gray
background are visible to £g, while others are not. Patch Mask visualizes the
POS sequence in an image-like format.

with domain shift due to the mismatch between test (target domain) and train-
ing (source domain) data, not only is the performance of existing segmentation
methods prone to degradation, but even foundation models (e.g. MedSAM [32])
exhibit low accuracy (as shown in Table [2). Most existing methods formulate
the segmentation task as pixel-wise classification [I8], which is fundamentally
image-semantic correspondence (ISC). In vascular segmentation, specifi-
cally, these methods tend to focus on style-dependent high-frequency features
rather than foreground structures [23]. This bias, combined with a lack of diver-
sity in training data, results in limited domain generalization (DG) ability. To
address this, [25] inversely fits ISC via extra reconstruction tasks, enabling the
model to keep more domain-invariant foreground features.

[19/27128] focus on filtering out style-related features through data augmen-
tation. However, these methods still remain based on ISC. Other works based on
few-shot learning (FSL) [5l4] obtain DG ability via prototype similarity within
target domain. However, these methods are consequently limited by the unifor-
mity of features across images. In addition, vascular foregrounds reflect anatom-
ical continuity, helping human experts in annotation by tracking vessels within
the context of identified segments. However, FSL-based methods cannot ensure
continuity in the way of humans, as they calculate similarity on separate images
rather than using the context within the image itself. Alternatively, some works
[29)26] ensure anatomical continuity by designing loss functions based on vascu-
lar skeletons, yet they do not integrate this prior into their network architecture.

To address these challenges, we propose Image-Sparse Annotation Com-
pletion (ISAC) segmentation model, leveraging CroCo [31], a cross-view com-
pletion pretrained model. CroCo reconstructs missing parts of an incomplete
view using spatial relationships with a complete view of the same scene. ISAC
thus reformulates segmentation as a mask completion task based on image-
mask correspondence (IMC) between vascular images and sparse annotated
mask supports. The designed IMC task aims to reconstruct incomplete masks
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based on the correspondence between images and sparse masks, therefore re-
duces domain shift effects by leveraging the structural characteristics of the
supported foreground to focus more on style-invariant vascular morphological
features. Different from FSL, ISAC not only adapts to unseen domains by im-
plicitly utilizing image-support similarity, but also simulates vascular tracking by
referencing context of mask in the support, thereby learning the anatomical con-
tinuity of vessels across adjacent regions. In some scenarios, acquiring even sparse
manually-annotated masks is challenging. Thus, we design the Uncertainty-
guided Patch Selection (UPS) module to extract high-quality supports
from pseudo labels generated by other segmentation models, which enables ISAC
to perform zero-shot segmentation without any manual annotations.

The contributions of our research are as follows: (1) We propose the ISAC
model with strong DG ability for vascular segmentation by reformulating it as a
mask completion task based on IMC, and improve the anatomical continuity of
prediction by vascular tracking around the supported context of the mask. (2)
We design the UPS module to extract high-quality supports from pseudo labels,
enabling ISAC to perform zero-shot vascular segmentation. (3) To the best of
our knowledge, we are the first to incorporate the cross-view completion model
into segmentation tasks. We evaluate ISAC on 7 vascular datasets spanning 3
domains, and the results show that ISAC outperforms state-of-the-art (SOTA)
methods across all datasets, highlighting its superior DG performance.

2 Method

We conduct our experiments using datasets from different domains: the source
domain dataset Dy = {(X7,Y,55)}~s and the target domain dataset D; =
{(X?,Y}, 85} . The model will be trained in a fully supervised manner on
D, and tested on D;. In each case, X;,Y; € RT*W represent the image and
its pixel-level segmentation annotation, while S; € RE*W represents the sparse
annotation support. As shown in Fig[l] S; is a patch-wise incomplete annotation
instead of a pixel-wise one. Specifically, the image is pre-divided into patches
(Rd?)7 each representing a local sub-region, and only a few are annotated while
the rest remain unannotated. The positions of annotated patches are denoted as
a sequence POS € {0,1}", where POS = 1 marks the positions of annotated.
We refer to such S; as Patch-wise Sparse Annotation Support (PSA).

The architecture of ISAC is shown in Fig[I] ISAC consists of a dual-branch
encoder and a support-guided decoder (see Section. In the dual-branch
encoder, the image branch & and the support branch £g are respectively used to
encode X; and 5; as deep features F; and Fg. Subsequently, under the constraint
of POS, the support-guided decoder D predicts the segmentation mask Y by
fusing F; and Fg. Moreover, to enable ISAC for zero-shot segmentation task
without manually annotated S;, we designed the Uncertainty-guided Patch
Selection Module (UPS) to extract high-quality PSA S/ from pseudo labels
Yi’ , which can be provided by other segmentation models (see Section . The
loss function is described in Section
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2.1 Image-Sparse Annotation Completion Segmentation Model

Dual-Branch Encoder. &; and Eg are independent Vision Transformer (ViT)
[6] encoders with identical structures, where X; and S; are flattened into em-
beddings (RNXd2).

To alleviate the issue of contextual sparsity in £g caused by PSA, we transfer

contextual features from & via a Masked Cross-attention (MCA) pathway every
3 ViT layers:

2§t =POS - Attny (y), v, ys) + (1 —POS) - Attna(yh, %, vh)

(1)

Attn(Q, K, V) = softmax (QKT) v
where ;vls denotes the input of the I-th layer of s, while 3} and ylS represent
the outputs of the [-th layer of £ and Eg, respectively. Independent parameters
are employed in Attn; and Attns to process annotated and unannotated patches
separately.

Support-guided Decoder. D is a dense-prediction transformer [22] (DPT)-
based decoder guided by Fg. In each ViT block, embeddings from F) are fused
with Fg via cross-attention following Multi-Head Self-Attention, providing guid-
ance for foreground segmentation. To achieve finer-grained vessel segmentation
and alleviate bottleneck effects, we employ a full-resolution convolutional upsam-
ple path head to generate the model predictions. Specifically, the DPT head pro-
gressively reconstructs embeddings from the ViT layers into multi-scale image-
like features at resolutions of 1/8, 1/4, 1/2, and full resolution. These features
are subsequently fused layer-by-layer via concatenation and deconvolution to
generate the final predictions.

2.2 Uncertainty-guided Patch Selection Module

In data-scarce scenarios, obtaining PSA can be challenging. Therefore, we pro-
pose the UPS to generate high-quality PSA using pseudo-labels Y/ from any
other segmentation model SEG trained on Ds;. With the assistance of UPS,
ISAC can perform zero-shot segmentation on unseen domains. Experiments show
that using }A’i’ as PSA without discrimination harms ISAC’s performance, as the
pseudo-labels contain noise introduced by domain shift. Consequently, the pro-
posed UPS aims to select patches with low noise from Yi’ as PSA. Inspired by
[13/12], we perform patch selection with the combination of image uncertainty
and prototype. Specifically, we set the variance of SEG’s predictions on X; across
different noise levels as the uncertainty U.

0l = %i[SEG(Xi + Ny o), ¥ = SEG(X,) (2)
j=0

where N (uj,ojz) is Gaussian noise. U/ represents the pixel-level uncertainty of
SEG of Y. Subsequently, via Mask Average Pooling (MAP), we extract the
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prototype Pt; € R® of low-uncertainty foreground where (Afl' is below the mean.
Then, we measure the average cosine similarity between Pt; and the foreground
features for each patch, and dynamically select the patch positions as POS for
PSA by retaining only the top o fraction.

1 1 F;. - Pt;
Pt; = Mijk - Fiji, Sip = —/— TR TR T
7 2o, Mo o S =t 2 TR
N
POS = {1{Sip25((am)}}p:1

where F; and F;, respectively denote the sets of all foreground pixels and the
foreground pixels in the p-th patch in Y;. Fjj;, € RY represents the deep features
extracted by SEG, where C' is determined by the architecture of SEG.

2.3 Loss Function

Considering the class imbalance caused by the relatively small proportion of vas-
cular foreground pixels, we adopt a combination of Dice Loss and BCE Loss as
the basic loss function. Based on that, to encourage ISAC to learn the corre-
spondence between X; and S; in POS regions, we assign an extra weight to the
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Fig. 2: Comparison of prediction visualization for DG scenarios between domains
F, O, and X.



6 T. Zhao et al.

POS regions. Additionally, we introduce cldice [29] to emphasize the anatomical
continuity around PSA, The loss function is formulated as follows:

L1(Y,Y) =\ Lodgice(Y. Y, 1+ POS) + As - Lupep(Y,Y,1+POS)
+ /\3 : ‘Ccldice(x Y)

where L,4ice and L, gcr denote the weighted versions of the Dice and BCE loss
functions respectively.

3 Experiments

3.1 Datasets and Experimental Details

Datasets. Our experiments utilize 7 public vascular datasets spanning 3 do-
mains: (1) Color Fundus (domain F) Datasets. 3 datasets included: DRIVE
(40 samples) [30], STARE (20 samples) [10], and CHASE DBI (28 samples) [7].
(2) Optical Coherence Tomography Angiography (domain O) Datasets.
2 datasets included: OCTA-500(6M) (300 samples) and OCTA-500(3M) (200
samples) [I5]. (3) X-ray Coronary Angiography (domain X) Datasets.
2 datasets included: XCA (134 samples) [I] and XCAD (126 samples) [I7]. All
images are resized to 1024 x 1024 in experiments, and the input employs a slid-
ing window strategy with a window size of 224 x 224, where adjacent windows
overlap by 50%.

Experimental Details. ISAC is implemented in PyTorch on an NVIDIA 3090
GPU. The model is trained for 100 epochs with a batch size of 4 in each domain.
The Adam optimizer is used with an initial learning rate of 2 x 1075, adjusted via
CosineAnnealingLR. Loss function weights are set as Ay = Ao = 0.5 and A3 = 1.
o is set to 0.85. PSA is randomly selected from the ground truth (GT) during
training and is provided either manually or by SEG during testing. 4 models

Table 1: Comparison with State-of-the-Art Methods in DG scenarios of domains
F+O and F+~X. A dash (-) indicates that the model fails to converge.

Model DG | F1 CL Prec Acc Rec | DG | F1 CL Prec Acc Rec
F—0]43.45 39.46 52.02 91.70 41.54 |F—X|41.44 39.40 49.57 94.49 41.82
VET |0-F|67.37 60.32 74.44 94.49 62.89 |X—F| - - - - -
F—0O|53.41 53.45 73.34 94.30 43.72 |[F—X|39.56 39.48 47.38 94.45 40.19
DDG |0—F|65.82 61.46 81.88 94.65 56.41 |X—F|51.00 42.02 78.89 93.19 38.61
F—0|44.39 42.81 39.42 85.13 65.96|F—X|41.39 39.79 47.90 94.26 48.33
AFN 10 F|61.94 60.76 68.02 93.40 58.13|X—F|30.47 25.08 90.25 92.28 19.47
F—0]|58.31 56.16 59.97 93.65 57.97 |[F—X|37.94 34.41 29.70 89.94 57.08
LIOT |0—F|72.62 70.85 72.77 94.89 73.44 |X—F|49.17 38.13 70.58 92.72 38.78
F—0|60.49 62.03 75.03 94.81 52.19 |[F—X|52.86 53.96 53.90 94.91 55.09
Ours |0—F|73.74 72.85 75.63 95.18 73.80|X—F|53.12 43.13 78.56 93.27 41.97
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Table 2: Comparison of prediction performance for different SEG and ISAC (1)
based on corresponding SEG between domains F, O, and X.

U-Net U-Net' | IterNet IterNet' | SwinTR SwinTR'
DG|F1 CL F1 CL |F1 CL F1 CL|F1 CL F1 CL
F—0]23.30 24.47[59.11 59.23]52.21 52.69[60.49 62.03|32.92 30.64[60.15 60.74
F—X|27.25 24.82(52.84 52.17 |38.46 38.94|51.94 53.98|25.31 21.02|52.38 52.49
O—=F|67.07 60.47(73.95 72.48 [63.80 56.84|73.74 72.85/67.03 65.63]72.99 72.12
0—X44.15 42.63|46.52 46.62 |28.26 32.45|34.68 39.43|32.35 34.66|36.17 39.15
X—F|47.96 40.57(54.15 44.12 [49.67 41.10(53.12 43.13]42.67 32.24]50.22 39.86
X—0][42.19 44.17/50.03 52.38 |29.37 27.48(43.59 40.22(42.24 42.01]49.82 49.98

MedSAM MedSAM'| LIOT LIOTT Manual’
DG|F1 CL F1 CL |F1 CL F1 CL F1 CL
F—0]60.02 57.89[60.61 61.61 |58.31 56.16]61.26 62.81 64.27 68.48
F—X|52.67 48.18/53.38 53.78 |37.45 33.62|52.90 53.90 69.51 71.36
O—F| - - - ~ |72.6270.85|73.72 73.12 75.31 78.88
0—X]40.18 46.82|41.60 44.39 |33.31 38.92|37.43 42.60 75.96 79.72
X>F| - - - - ]49.17 38.13[52.46 40.65 64.56 71.52
X—0|52.17 50.11|56.61 57.55 |39.83 36.42|46.13 41.99 64.14 75.86

with varying performance are used as SEG to demonstrate the robustness of
UPS: U-Net [24], SwinTR [9], IterNet [14] and MedSAM [16]. 5 metrics are
used in evaluation: Dice Coefficient (F1), Centerline Dice Coefficient (CL) [29],
Precision (Prec), Accuracy (Acc), and Recall (Rec).

3.2 Experimental Results

Comparison with State-of-the-Art Methods. In our experiments, we com-
pare ISAC with state-of-the-art (SOTA) methods that focus on DG in medical
image segmentation, including: VFT [II], DDG [3], AFN [28] and LIOT [27].
We present 2 groups of DG results in Table [I} one between domain F and
domain O, and the other between domain O and the domain X. For a fair
comparison, IterNet is used as SEG in the experiments. ISAC outperforms all
compared SOTA methods in terms of F1 and CL scores across the DG scenar-
ios above. Specifically, for F++O DG, ISAC achieves F1 scores of 60.49% and
73.74%, which are 2.18% and 1.12% higher than SOTA methods respectively.
The CL scores are 62.03% and 72.85%, surpassing the SOTA methods by 5.87%
and 2.00% respectively. For F«~+X DG, ISAC achieves F1 scores of 52.86% and
53.12%, exceeding the SOTA methods by 11.42% and 2.12% respectively. The
CL scores are 53.96% and 43.13%, which are 14.17% and 1.11% higher than the
SOTA methods respectively. Visual segmentation results are shown in Fig

3.3 Ablation study

Impact of Different SEG. In the zero-shot scenario, the performance of
ISAC is related to the pseudo label provided by SEG. Therefore, we test the
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i Table 3: Illustration of the Impact of UPS

7 W and Cross-attention Pathway on Segmentation

= Performance under F+O DG.

. D—D—“—D—G:EQD UPSMCA| DG | F1 CL Prec Acc Rec
F—0|56.73 59.34 74.84 94.48 47.05

P s aw s om0 X X JO—F|72.07 70.34 71.74 94.74 74.33

Toh Ao oo ado F—O[56.73 59.38 74.91 94.49 47.03

x v |0=F|72.16 70.36 71.80 94.75 74.44
. . F—O|57.20 59.84 75.06 94.54 47.53
Fig. 3: Illustration of the Impact v X |OSF|71.98 70.37 72.64 94.79 T3.17
of o on Segmentation Perfor- F—-0][60.49 62.03 75.03 94.81 52.19
mance under F+O DG. v v |O—F|73.74 72.85 75.63 95.18 73.80

performance of ISAC with different SEG, as shown in Table [2| (1) When us-
ing general baselines (U-Net, IterNet, or SwinTR) as SEG, ISAC consistently
achieves better performance than the corresponding SEG. Even when the SEG
performs poorly (e.g., U-Net for F—=0), ISAC still provides relatively more ac-
curate predictions. (2) When using the foundation model MedSAM with high
DG ability as SEG, ISAC achieves higher performance compared to MedSAM
in most DG scenarios. (Since MedSAM s trained with domain F images, do-
main F is excluded from testing to ensure fairness.) (3) When model designed
for DG (LIOT) tasks acts as SEG, ISAC also achieves higher performance in all
DG scenarios. Additionally, we tested ISAC with manually annotated support
by randomly sampling from GT as PSA. As shown in the last column, the re-
sults show that ISAC with manually annotated PSA outperforms the zero-shot
scenario.

Effectiveness of UPS and MCA Pathway. This experiment was conducted
under the F<+0O DG with IterNet as the SEG. First, the impact of o in UPS
is shown in Fig |3l The model achieves optimal performance when o € [0.8,0.9].
Furthermore, with o = 0.85, the effects of UPS and the MCA Pathway on model
performance are presented in Table [3] The results demonstrate the necessity of
both component. Since the workflow of ISAC relies on completing incomplete
input segmentation masks, its performance is highly influenced by the quality of
these PSA. Therefore, the introduction of the UPS module significantly enhances
the model’s overall segmentation performance. On this basis, the proposed MCA
pathway further improves the fineness of segmentation masks by supplementing
contextual information for sparse masks.

4 Conclusions

In this work, we propose Image-Sparse Annotation Completion (ISAC) Segmen-
tation Model to tackle the challenges of DG and foreground discontinuity in
vascular segmentation. ISAC reformulates segmentation as a mask completion
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task using IMC instead of ISC, leveraging support to guide the model toward
style-invariant vascular morphological features and thereby enhancing its DG
ability in unseen domains. Notably, although ISAC has certain dependency on
sparse annotations, the UPS module we designed can leverage the limited gen-
eralization ability of other segmentation networks to reduce this dependency.
With the assistance of the UPS module, ISAC acquires the end-to-end segmen-
tation capability in zero-shot scenarios. Experiments on 7 vascular datasets in 3
domains show that ISAC achieves SOTA performance in zero-shot DG, demon-
strating its superiority over existing methods.
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