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Abstract. Automatic disease image grading is a significant applica-
tion of artificial intelligence for healthcare, enabling faster and more
accurate patient assessments. However, domain shifts, which are exacer-
bated by data imbalance, introduce bias into the model, posing deploy-
ment difficulties in clinical applications. To address the problem, we pro-
pose a novel Uncertainty-aware Multi-experts Knowledge Distillation
(UMKD) framework to transfer knowledge from multiple expert models
to a single student model. Specifically, to extract discriminative features,
UMKD decouples task-agnostic and task-specific features with shallow
and compact feature alignment in the feature space. At the output space,
an uncertainty-aware decoupled distillation (UDD) mechanism dynami-
cally adjusts knowledge transfer weights based on expert model uncer-
tainties, ensuring robust and reliable distillation. Additionally, UMKD
also tackles the problems of model architecture heterogeneity and distri-
bution discrepancies between source and target domains, which are inad-
equately tackled by previous KD approaches. Extensive experiments on
histology prostate grading (SICAPv2 ) and fundus image grading (AP-
TOS) demonstrate that UMKD achieves a new state-of-the-art in both
source-imbalanced and target-imbalanced scenarios, offering a robust and
practical solution for real-world disease image grading. The source code
has been released by https://github.com/aTongs1/UMKD
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Fig. 1: Domain shifts between source and target data (left) and the performance
of methods (right) for sources-imbalanced and target-imbalanced KD tasks.

1 Introduction

Image-driven disease grading systems are pivotal for enhancing clinical decision-
making efficiency [26,14,2], especially for diabetic retinopathy (DR) and prostate
cancer. Early-stage precise grading significantly improves patient prognosis (e.g.,
timely intervention reduces blindness risk by 90% in DR patients) [20,1]. How-
ever, traditional grading is largely limited by challenges such as differences in
subjective expert judgment and difficulty in identifying subtle pathologic fea-
tures. Clinical evidence reports a 40% inter-observer variability in Gleason scor-
ing and a misdiagnosis rate of more than 25% for early DR microaneurysms.

Recently, medical efficiency has been enhanced by the rapid development
of artificial intelligence-based automatic disease grading systems [3,7,24]. For
DR grading, Dai et al. [5] developed DeepDR to detect early-to-late stages of
diabetic retinopathy. Wang et al. [23] reformulate DR grading as sequence pre-
diction, effectively resolving ambiguous boundary issues. On the other hand, for
prostate cancer grading, Morpho-Grader [4] disentangles glandular morphology
from stromal textures. BayeSeg [9,10] employs variational inference to separate
structural invariants from texture variations, significantly improving model ro-
bustness. Despite progress in disease grading methods [18,1,15], their deploy-
ment in the clinical applications is still limited by domain shifts. Especially,
imbalanced data exacerbate domain shifts (differences between source and tar-
get domain distributions). As demonstrated in the SICAPv2 dataset (Fig.1 left),
stage III prostate cancer samples constitute 8% of the cohort, leading models to
overfit to the majority class. This imbalance is equally pronounced in DR grad-
ing, where scarce early-stage lesions reduce microaneurysm detection sensitivity
by over 30% [16]. Multi-expert knowledge distillation (MKD) [6,11,8], a tech-
nique that improves the generalization of the student for minority class samples
by transferring expert model knowledge. Due to its robustness to domain shifts,
MKD has been applied to address class imbalance in natural images [25,17], but
its study in disease image grading remains underexplored.

In this paper, we propose a novelUncertainty-awareMulti-expertsKnowledge
Distillation (UMKD) framework to tackle the problem of class imbalance. Specif-
ically, to decouple the structural and semantic information of image represen-
tation, we design two feature alignment mechanisms: shallow feature alignment



(SFA) and compact feature alignment (CFA). SFA generalizes the alignment be-
tween expert and student features by multi-scale low-pass filtering, thereby pre-
serving structural information (task-agnostic features) of disease images. CFA
maps the features of the expert and student models to a common spherical
space, allowing the student model to learn grading-related feature knowledge
from each expert. We design an uncertainty-aware decoupled distillation (UDD)
mechanism at the output space, automatically detecting uncertainties in the
expert model caused by class imbalance. Via uncertainty metrics, the student
model dynamically adjusts knowledge transfer weights, reducing bias propaga-
tion and ensuring a more robust and reliable knowledge transfer process. Exper-
imental results demonstrate that our method significantly outperforms existing
multi-expert distillation approaches in both fundus and prostate disease image
grading tasks. Particularly for imbalanced classes and heterogeneous models,
UMKD achieves more reliable knowledge transfer, as visualized in Fig. 1.

2 Method

Model of the uncertainty-aware multi-expert knowledge distillation.
We aim to distill the knowledge from multi-expert models into a target student
model for imbalanced disease grading tasks. As shown in Fig. 2, our framework
includes shallow feature alignment (SFA), compact feature alignment (CFA),
and uncertainty-aware decoupled distillation (UDD). First, we will introduce
the feature alignment loss, which will be reused by the SFA and CFA modules.
Next, a detailed description of each module will be provided.

Maximum Mean Discrepancy and Reconstruction Loss. To measure
the distribution differences between the student’s features and those of each
expert for feature alignment in the feature space, we employ Maximum Mean
Discrepancy (MMD) [6]. The MMD distance is calculated as follows:
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where ϕ is an explicit mapping function, F̂Tt
and F̂S represent the features of

expert Tt and student S after projection, respectively, B is the batch size, and
N is the number of experts. Meanwhile, to ensure that the expert models remain
unchanged due to privacy constraints, the reconstruction loss LMSE is used to
measure the changes in the expert models before and after feature alignment:

LMSE =

N∑
t=1

∥∥∥FTt − F̂Tt

∥∥∥2

2
, (2)

where FTt represents the original features of the expert model Tt before align-
ment, and F̂Tt denotes the decoded features of the expert model Tt after align-
ment. By aggregating the alignment loss and the reconstruction loss, the total
loss for feature alignment can be expressed as:

LFA = LMMD + LMSE. (3)
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Fig. 2: Model of uncertainty-aware multi-expert knowledge distillation.

Shallow Feature Alignment. SFA preserves the main structural informa-
tion of given images while removing noise and high-frequency details, ensuring
consistency in generalized feature learning between expert models and student
models [11]. Specifically, given shallow-layer feature representations between het-
erogeneous expert-student models, we propose to align features with multi-scale
low-pass filtering from a frequency domain. For each expert feature FTt , we adopt
traditional average pooling as the low-pass filter and construct multi-scale filters
by adjusting different kernel sizes and strides across multiple groups to accom-
modate different cutoff frequencies. For the m-th group, the frequency-domain
features F̂Tt

via multi-scale low-pass filter (msLF) can be expressed as:

F̂Tt = msLF(FTt) = Φ(AvgPoolkm×km
(FTt)), (4)

where AvgPoolkm×km
denotes the average pooling function with a kernel size of

km × km, and Φ(·) represents the bilinear interpolation operation.
For the student feature FS , we design a learnable low-pass filter, which con-

sists of a multi-scale low-pass filter, a convolutional downsampling module, and
a depthwise separable convolution (DSConv). The learnable student feature F̂S

in frequency domain is expressed as:

F̂S = Conv3×3(Concat[DownSamples×s(FS),msLF(FS)]), (5)

where DownSamples×s, Concat and Conv3×3 indicates the convolutional down-
sampling module, feature concatenation operation, and 3 × 3 convolution op-
eration, respectively. After obtaining the frequency-domain teacher expert and
student features with msLF transformation, the total loss of SFA using the losses
in Eq. (3) is rewritten as: LSFA = LMMD + LMSE.

Compact Feature Alignment. CFA projects the feature set of the fourth
layer (the penultimate layer before the fully connected layer) of all models into
a compact high-dimensional spherical space Z. In this space, the student model
can learn degrading-related hierarchical knowledge from different pre-trained
experts through spatial-domain feature alignment. Considering the heterogeneity
among models, the output feature dimensions of their encoders may differ. Before



performing CFA, a 1 × 1 convolutional kernel is appended to the end of each
encoder to adjust the output features of different encoders to the same dimension.
In the spherical space Z, the total loss for spatial CFA is computed using the
MMD and MSE losses as: LSFA = LMMD + LMSE.

Uncertainty-aware Decoupled Distillation. To address the expert bias
for the output prediction, we propose an uncertainty-aware distillation module
that dynamically transfers both global and local knowledge from each expert to
the student network. Given the logits maps LTt

∈ RC×H×W and LS ∈ RC×H×W

from the expert Tt and student S, we apply spatial partitioning P(w,w) at
multiple scales w ∈ W = {1, 2, 4, ..., wmax}. For each partitioned cell Z(w, n) at
scale w (where n ∈ Nw = {1, 4, 16, ..., w2}), the accumulated logits are:

ψTt(w, n) =
1

w2

∑
(j,k)∈Z(w,n)

LTt(j, k), ψS(w, n) =
1

w2

∑
(j,k)∈Z(w,n)

LS(j, k). (6)

Then, we devise an uncertainty coefficient UTt
that incorporates the teacher’s

prediction confidence. For each scale-region pair (w,n), building upon the decou-
pled knowledge distillation paradigm [27], the UDD loss can be defined as:

LUDD(w, n) = (2 + UTt) · LTCKD + (1− UTt) · LNCKD. (7)

Here, the loss components are defined as: LTCKD = ∥σ(ψTt
(w, n))−σ(ψS(w, n))∥22,

LNCKD = ∥ψTt
(w, n) − ψS(w, n)∥22. σ denotes the softmax function. UTt

=
1 − max(σ(ψTt

(w, n))) ∈ [0, 1], which quantifies prediction ambiguity by mea-
suring the deviation from a one-hot distribution. The (2 + UTt) term amplifies
supervision on ambiguous regions (UTt → 1) where expert predictions tend to
be unreliable, while (1−UTt

) maintains precise logit alignment for task-agnostic
regions (UTt

→ 0).
Training Loss Function. The total training loss can be described as:

LTotal = Lcls + α · (LSFA + LCFA) + β ·
∑
w∈W

∑
n∈Nw

LUDD(w, n), (8)

where Lcls is the cross-entropy loss and α, β balance the loss components.

3 Experiments

3.1 Setups

Datasets and Metrics. We evaluate our UMKD on two widely used datasets:
SICAPv2 [22] for histology prostate grading and APTOS [16] for fundus image
grading. Four well-organized metrics are adopted for performance comparison:
overall accuracy (OA), mean accuracy (mAcc), weighted F1-score (F1), and
mean absolute error (MAE). The bold and underline indicate the best and
the second-best performance in each sub-dataset test.

Implementation details. We conduct all experiments on two real-world
challenging tasks: sources-imbalanced distillation and target-imbalanced distilla-
tion. In sources-imbalanced distillation, the expert models are trained on im-
balanced source datasets, and distillation is performed on class-balanced target



Table 1: Prostate cancer grading using individually trained ResNet models (Top),
feature-based KD models (Middle), and KD models (Bottom).

Methods
Source-imbalanced KD (%) Target-imbalanced KD (%)
OA↑ mAcc↑ F1 ↑ MAE ↓ OA↑ mAcc↑ F1 ↑ MAE↓

Resnet50 (Exp1) 91.53 89.48 91.47 0.1098 89.19 89.44 89.13 0.1332
Resnet50 (Exp2) 92.05 89.88 91.93 0.1100 89.71 89.78 89.61 0.1322
Resnet18 (Stu) 89.58 89.06 89.49 0.1463 90.36 88.11 90.23 0.1318

FitNet [21] 78.78 78.41 78.42 0.3136 83.01 78.21 82.60 0.2648
RKD [19] 88.54 88.24 88.44 0.1690 90.79 88.30 90.67 0.1369

KD [13] 89.06 88.39 88.97 0.1624 90.97 89.44 90.90 0.1368
DKD [27] 86.91 85.01 86.68 0.1739 89.19 87.11 89.12 0.1476
SDD [25] 87.82 86.66 87.67 0.1594 89.93 88.81 89.85 0.1447
UMKD 91.02 90.23 90.94 0.1294 91.75 90.72 91.72 0.1199

△ +3.20 +3.57 +3.27 +0.0300 +1.82 +1.91 +1.87 +0.0248

datasets. In target-imbalanced distillation, the expert models are trained on bal-
anced source datasets, and distillation is performed on class-imbalanced target
datasets. Specifically, we generate balanced subsets from original imbalanced
datasets through random sampling, including SICAPv2-balanced (2500, 2222,
2500, 948) and APTOS-balanced (600, 370, 300, 193, 295) for each grading cat-
egory. The training, validation, and test sets for all datasets are split in an 8:1:1
ratio, and data augmentation techniques such as random cropping and flipping
are employed to expand the dataset. Notably, color jittering is excluded due to
the sensitivity of pathological images to color variations, as random color in-
jection could disrupt pathological features. For model training, we utilize two
ImageNet pre-trained ResNet50 models as expert models and one ImageNet
pre-trained ResNet18 model as the student model.

Baselines. We compare UMKD with a variety of the most representative
SOTA methods, including feature-based (FitNet [21] and RKD [19]), as well as
logits-based (KD [13], DKD [27] and the latest SDD [17,25]). In addition, we
also report the results of ResNet [12] trained on each dataset as a benchmark.

3.2 Comparison Results

Results on SICAPv2 Grading. Our UMKD outperforms all previous logits-
based and feature-based KD baselines across all metrics, achieving a new state-
of-the-art (SOTA) performance as shown in Table 1.

In the sources-imbalanced KD task, UMKD achieves the highest overall accu-
racy (OA = 91.02%), mean accuracy (mAcc = 90.23%), and weighted F1 score
(F1 = 90.94%), while also attaining the lowest mean absolute error (MAE =
0.1294). Specifically, compared to SDD [25], UMKD improves the mean accu-
racy by 3.57%, with all performance gains highlighted in green. Similarly, in
the target-imbalanced KD task, UMKD achieves SOTA performance, with mean
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Fig. 3: T-SNE Visualization of different methods on SICAPv2 Grading.

Table 2: Fundus image grading using individually trained ResNet models (Top),
feature-based KD models (Middle), and KD models (Bottom).

Methods
Sources-imbalanced KD (%) Target-imbalanced KD (%)
OA↑ mAcc↑ F1 ↑ MAE ↓ OA↑ mAcc↑ F1 ↑ MAE↓

Resnet50 (Exp1) 82.34 66.33 80.63 0.2478 72.66 63.74 72.18 0.4001
Resnet50 (Exp2) 82.81 65.77 81.89 0.2421 72.66 63.74 72.51 0.3936
Resnet18 (Sup) 74.21 67.18 73.94 0.4192 82.34 70.56 81.04 0.2521

FitNet [21] 67.57 59.12 66.57 0.5704 79.06 55.77 77.12 0.3694
RKD [19] 74.61 67.15 74.37 0.4203 85.00 69.75 84.38 0.2482

KD [13] 73.04 66.07 72.77 0.4448 83.43 71.56 83.50 0.2578
DKD [27] 70.70 61.74 69.83 0.4018 81.87 73.95 82.43 0.2743
SDD [25] 73.44 65.07 72.62 0.4017 83.12 73.55 82.83 0.2662
UMKD 74.61 67.33 74.43 0.3589 83.91 74.38 84.03 0.2476

△ +1.17 +2.26 +1.81 +0.0428 +0.79 +0.83 +1.20 +0.0186

accuracy exceeding 90.72%. This consistent superiority of UMKD across both
tasks highlights its robustness and generalizability in diverse distillation settings.

Notably, the sources-imbalanced KD is more challenging than the target-
imbalanced task due to the inherent biases in the expert models’ knowledge,
which are trained on imbalanced datasets. Our UMKD explicitly quantifies and
mitigates this imbalance bias, ensuring a more robust and reliable distillation
process. In summary, our UMKD not only reduces the number of model parame-
ters (ResNet18 vs. ResNet50) but also significantly enhances model performance,
making it a promising tool for improving the accuracy and reliability of prostate
cancer grading and diagnosis. To further validate the effectiveness of our method,
we visualize the t-SNE results of different approaches. As shown in Fig. 3, our
UMKD demonstrates its effectiveness through strong intra-class cohesion and
clear inter-class separation, which is consistent with the quantitative results.

Results on APTOS Grading. We evaluate the performance of UMKD on the
more challenging APTOS dataset, where data is more imbalanced and expert
annotation is biased due to the inherent complexity of fundus images.

As shown in Table 2, UMKD achieves superior performance in both sources-
imbalanced and target-imbalanced KD tasks compared to existing methods. Specif-



Table 3: Ablation study of SFA, CFA, and UDD modules on SICAPv2 dataset.

Methods Sources-imbalanced KD (%) Target-imbalanced KD (%)

SFA CFA UDD OA↑ mAcc↑ F1 ↑ MAE ↓ OA↑ mAcc↑ F1 ↑ MAE↓

87.82 86.66 87.67 0.1594 89.93 88.81 89.85 0.1447
✓ ✓ 90.69 89.92 90.58 0.1314 91.62 90.54 91.58 0.1258

✓ ✓ 90.36 89.68 90.25 0.1355 91.44 90.93 91.40 0.1275
✓ ✓ 88.15 86.84 87.97 0.1566 90.06 89.15 90.03 0.1416
✓ ✓ ✓ 91.02 90.23 90.94 0.1294 91.75 90.72 91.72 0.1199

ically, for sources-imbalanced KD task, our proposed UMKD consistently outper-
forms all baselines, achieving the highest overall accuracy (OA = 74.61%), mean
accuracy (mAcc = 67.33%), and weighted F1 score (F1 = 74.43%), while attain-
ing the lowest mean absolute error (MAE = 0.3589). These results demonstrate
UMKD’s capability to quantify the prediction bias in expert models induced
by imbalanced training data. By leveraging the uncertainty of the expert mod-
els’ outputs, the student model can adaptively adjust the weights of knowledge
transfer, thereby ensuring a more robust and reliable distillation process while
significantly enhancing model performance.

In the target-imbalanced distillation task, UMKD achieves SOTA perfor-
mance compared to all logits-based methods, attaining the highest mean accu-
racy (mAcc = 74.38%) and maintaining strong performance across other metrics
(OA = 83.91%, F1 = 84.03%). As shown in 7-th row, UMKD yields suboptimal
results in OA and F1 compared to the feature-based RKD [19], yet it signifi-
cantly outperforms RKD in mACC (74.38% vs. 69.75%). We attribute this to
the following reasons: first, RKD optimizes the angular momentum to compute
mini-batch distances between sample triplets, encouraging samples of the same
class to cluster closer together. While this approach achieves the highest overall
accuracy, it tends to favor majority classes in target-imbalanced distillation tasks
due to the inherent class imbalance within batches. In contrast, UMKD addresses
this bias by explicitly measuring and mitigating the imbalance with uncertainty,
achieving a better trade-off between overall accuracy and mean accuracy.

3.3 Ablation Study

We ablate the contributions of UMKD’s three components. Results on the SICAPv2
dataset (Table 3) show that all components are critical for high performance
in both source-imbalanced and target-imbalanced grading tasks. Removing SFA
and CFA leads to significant degradation, as task-agnostic structural features
and task-specific semantic features cannot be effectively decoupled. This is par-
ticularly problematic in disease image grading, where localized pathological fea-
tures may be obscured by reliance on global features alone. Without UDD, the
student model fails to dynamically adjust knowledge transfer weights, result-
ing in poor distillation performance. These findings underscore the importance



of uncertainty-aware mechanisms for mitigating bias propagation and ensuring
robust knowledge transfer. Ablation experiments on the APTOS dataset yield
consistent conclusions but are omitted due to space constraints.

4 Conclusion

We proposed a UMKD framework to address the challenge of data imbalance in
grading tasks. By integrating the frequency-domain SFA and spatial-domain
CFA modules, UMKD effectively decoupled task-agnostic structural features
from task-specific semantic features. The UDD mechanism further enhanced
robustness by dynamically adjusting knowledge transfer weights based on ex-
pert knowledge uncertainties and mitigated biases induced by imbalanced data
and model heterogeneity. Extensive experiments on fundus and prostate cancer
datasets have demonstrated that UMKD achieved state-of-the-art performance
in both source-imbalanced and target-imbalanced scenarios.
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