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Abstract. Unsafe surgical care is a critical health concern, often linked
to limitations in surgeon experience, skills, and situational awareness.
Integrating patient-specific 3D models into the surgical field can en-
hance visualization, provide real-time anatomical guidance, and reduce
intraoperative complications. However, reliably registering these models
in general surgery remains challenging due to mismatches between pre-
operative and intraoperative organ surfaces—such as deformations and
noise. To overcome these challenges, we introduce the first deep learning-
based non-rigid point cloud registration method that is genuinely patient-
specific, being both trained and tested on the same individual’s anatomy.
Our approach combines a Transformer encoder-decoder architecture with
overlap estimation and a dedicated matching module to predict dense
correspondences, followed by a physics-based algorithm for registration.
Experimental results on both synthetic and real data demonstrate that
our patient-specific method significantly outperforms traditional agnos-
tic approaches, achieving 45% Matching Score with 92% Inlier Ratio on
synthetic data, highlighting its potential to improve surgical care.
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1 Introduction

Unsafe surgical care remains a significant global health concern, contributing to
patient complications, prolonged hospital stays, increased healthcare costs, and
potential disability or death [16]. Adverse events are often related to the expe-
rience, skills, and situational awareness of surgeons, particularly in recognizing
anatomical variations and integrating preoperative data intraoperatively [15].
Enhancing surgical awareness by overlaying patient-specific 3D models - such as
organs, tumors, and vessels - onto the surgical field, can improve visualization
and real-time anatomical guidance and reduce intraoperative complications [1].
The application in general surgery is particularly challenging due to the dynamic
nature of organ tissues [3]. Factors like patient positioning, pneumoperitoneum
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insufflation, and physiological movements cause intraoperative organ surfaces to
differ from preoperative imaging, making model-to-image registration a critical
yet unresolved challenge in laparoscopy.

Point cloud registration methods have been proposed to align the preopera-
tive organ surface point cloud, extracted from imaging modalities like CT scan,
with an intraoperative point cloud, obtained from e.g. stereo vision of the surgical
field, by estimating the transformation needed to match corresponding anatomi-
cal structures. Early non—deep-learning methods rely on finite-element models of
liver mechanics: [7] cast registration as an optimal control problem on a hyper-
elastic FEM, solving for the surface forces that reproduce sparse displacement,
while [4] build a linear modal basis from relaxed control-point perturbations and
use a Levenberg—Marquardt solver to fit mode weights to surface and vascular
landmarks. Moving to deep learning, a state-of-the-art algorithm in non-rigid
partial point cloud registration applied to generic objects is Lepard [5]. Their
model combines a fully convolutional feature extraction, Transformer-based self
cross-attention and differentiable matching to predict point cloud correspon-
dences. Despite the excellent performances on synthetic data of deep learning-
based point cloud registration, challenges remain in real-world medical applica-
tions due to the disparity between dense, noise-free preoperative point clouds
and intraoperative point clouds, which are often partial (< 20%), noisy [20], and
deformable, making accurate alignment difficult. To this end, recent methods
have been developed to improve registration in challenging surgical environ-
ments. V2S-Net [9] learns a data-driven deformation basis from simulated tissue
deformation to align preoperative volumes with full intraoperative surfaces. [2]
proposes a rigid registration algorithm for liver surfaces in a low overlap sce-
nario. It combines local and global features to estimate the overlap mask used to
filter the non-overlapping region of the point cloud. LiverMatch [17] employs a
transformer-based network for matching complete and partial liver point clouds
in deformed conditions. Furthermore, the authors propose their synthetic dataset
starting from 16 livers in the 3D-IRCADb-01 dataset [11] and applying defor-
mations and crops to them. Zhang et al. [21] propose KCR-Net, integrating a
Neighborhood Feature Fusion Module (NFFM) for robust keypoint registration,
even in low-overlap scenarios. Despite these advancements, challenges remain
in handling intraoperative deformations, noise, and complete-to-partial registra-
tions.

All these state-of-the-art methods adopt an agnostic strategy, training on
large datasets to generalize to new cases. However, we argue this approach may
not be ideal in surgical settings, where error margins are extremely low and
optimal outcomes are critical for each patient. To address this limitation, we
introduce a novel patient-specific non-rigid point cloud registration method that
leverages preoperative information to tailor the registration process for each in-
dividual. Uniquely, our model is both trained and tested on the same patient’s
anatomy. It employs a Transformer encoder-decoder architecture combined with
overlap estimation and a dedicated matching module to predict dense correspon-
dences. Additionally, we introduce a novel on-the-fly data generation strategy
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during training, which includes dynamic patient-specific deformation generation
and an innovative visible crop logic. Experimental results on both synthetic and
real data confirm that our patient-specific approach significantly outperforms
traditional agnostic methods.

2 Methods

The architecture of the proposed registration method is presented in Fig. 1. The
pipeline consists of five main modules: Keypoint Features Extraction, Keypoint
Features Conditioning, Complete-to-Partial Overlap Prediction, Point-to-Node
Decoder and Matching Non-Rigid Registration. First, KPConv is utilized to ex-
tract keypoints and their corresponding features from the input point clouds.
Specifically, let X € RM*3 represent the complete point cloud of the organ of in-
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Fig. 1: The network uses KPConv to detect keypoints and extract their features,
refines these features through self- and cross-attention, and then feeds them into
the decoder and matching module to predict dense point correspondences.

terest (e.g., derived from a 3D model obtained via a CT scan), and let Y € RV*3
denote a partial point cloud of the same organ (e.g., captured using an endo-
scopic camera), where N <« M. The extracted features are then processed by
the encoder, which employs self-attention and cross-attention mechanisms to
enhance feature representation and alignment. The Complete-to-Partial Over-
lap Prediction module predicts the regions of X and Y that correspond to the
same anatomical area, helping to refine keypoint matching. Keypoint features
and overlap scores are extended to the dense representation using a Point-to-
Node Decoder. Subsequently, the Matching module determines correspondences
by leveraging the similarity matrix computed between these features and the
original 3D coordinates.

Keypoint Features Extraction Module Kernel Point Convolution (KP-
Conv) [14] is used for feature extraction. The KPConv backbone converts the
input point cloud into a reduced set of keypoints Kx € RM >3 and Ky e RV *3
through a series of ResNet-like blocks and strided convolutions, effectively down-
sampling the two clouds to achieve similar densities. In addition to the keypoints,
the associated features Fg, € RM'XD and Fg, € RN *D are also produced.
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Keypoint Features Conditioning (Encoder) Module We reduce the di-
mension of the keypoints features (i.e. Fx, and Fg, ) to d = 256 through a
linear projection. Additionally, we apply sinusoidal positional encoding to the
keypoint coordinates (i.e. Kx and Kx) to provide the transformer with an
understanding of their spatial relationships. Both the high-level features and
positional encodings are fed into the cross-encoder. High-level features enable
the transformer to interpret and compare semantic content within the point
clouds during alignment, while positional encoding supplies spatial context by
emphasizing the structure and relative arrangement of points.

Following [18], each transformer cross-encoder layer consists of three sub-
layers: (i) a multi-head self-attention layer that processes each point cloud inde-
pendently; (ii) a multi-head cross-attention layer that updates the features of one
point cloud by incorporating information from the other; and (iii) a position-wise
feed-forward network. Cr, € RM %4 and  Cg, € RN *? are the conditioned
keypoint features produced by the encoder.

Overlap prediction Module The overlap module leverages conditioned fea-
tures to compute keypoint overlap scores, denoted as § = [$k,, 8k, | using a
linear fully connected layer with sigmoid activation, following:

o) 8Ky =1/(1 4 e (Crx Watha))

5T 8xy = 1/(1 + e (Cry Wartb)) (1)
where W3 and bs are learnable weights and biases parameters. These scores
quantify the probability that a keypoint lies within the overlapping region. In
our low-overlap scenario—where less than 20% of X is covered by the tar-

get—accurate overlap score prediction is vital [22], as it directs the model to
focus its correspondence search on the relevant region.

Point-to-Node Decoder To establish dense correspondences between the two
clouds, we employ a decoder that propagates features and overlap scores across
every dense point. Instead of using the conventional KPConv decoder, which
relies on k-nearest neighbour search, we adopted a point-to-node grouping strat-
egy similar to [19]. This approach offers two main advantages: (1) each point
is uniquely assigned to one node (i.e. keypoint), ensuring no point is left unas-
signed, and (2) it inherently adapts to various scales. After grouping, we obtain
dense point features (Cx € RM*4 Cy € RV*4) and overlap scores (8x,8y).
The features are concatenated with the point’s 3D coordinates (C% € RM*d+3,
C; € RV*443) " and this combined vector is fed into a MLP to estimate the
final coordinates for X. Our MLP first projects the concatenated input from a
d + 3 dimensional space into a d-dimensional representation, applies non-linear
activations, and ultimately outputs a 3-dimensional vector corresponding to the
deformed coordinates (X,Y). Specifically: X = ReLU(C%W; + b;)Wy + by,
where W1, W5 and bi,by are learnable weights and biases, respectively. At
this stage, the model attempts an initial non-rigid registration. Although the
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deformed coordinates it produces are rough, they provide a valuable signal for
the chamfer loss to effectively guide the training process. Separately, the overlap
scores are refined through a linear layer.

Matching and Physics-based Non-rigid Registration Within the Match-
ing module, we begin by refining the Cx and Cy using a linear layer. Then, we
compute a similarity matrix and convert it into a confidence matrix M using a
dual-softmax operation. Finally, following [17], matches m are selected from M
based on a thresholded Mutual Nearest Neighbor criterion.

Once the matching is obtained, we can formulate the non-rigid registration
problem as an energy minimization: rg}i(n%éXTSéX + k|| Ym — Xm]||?, where 6X

is the displacement field to be estimated, S is the stiffness matrix, which encodes
the biomechanical properties of the organ, k is a scalar stiffness parameter that
converts displacement to external forces.

The first term $6X”S6X represents the internal elastic energy, ensuring that
deformations follow biomechanical constraints, in particular in non-visible parts
of the organ. The second term, k||Ym — Xm||?, enforces alignment with the
observed correspondences. Since this formulation is static (no acceleration), the
system does not include mass or damping terms. This system is solved using the
Conjugate Gradient method.

Optimization Losses Our method employs a weighted sum of three losses: (i)
a matching loss (ML) [6] to supervise the confidence matrix M with the ground
truth matches; (ii) a chamfer loss (CL) weighted on the overlap score, defined
as: CL(X,Y,8x) = ﬁ > scx 8o mingey [|# — y[|P. This loss is not focused on
finding exact 1-1 correspondences but rather a global geometrical alignment.
Finally, (iii) an overlap loss (OL) similar to [18] designed to optimize the overlap

scores.

Patient-specific Training Dataset Generation Generating a patient-specific
training dataset involves creating pairs of complete and partial 3D point clouds
from pre-operative CT scans, incorporating both rigid and non-rigid transforma-
tions. We employ the As-Rigid-As-Possible (ARAP) algorithm [12] to generate
two types of deformation: (i) compression deformation, which simulates the effect
of CO, insufflation by displacing control points along their normal vectors with
randomly assigned magnitudes in the range [0,0.1]; and (ii) lobe deformations,
introduced by applying random displacements to control points within the lobe
region, with magnitudes ranging from [0, 0.25].

To realistically generate partial point clouds similar to an endoscopic scene,
we generate a dummy camera position that points toward the visible surface
of the organ. We sample random spherical coordinates while constraining the
polar and azimuthal angles to a realistic range for intraoperative settings. Using
the camera direction and the surface normals of the organ, we compute the dot
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product to assess visibility. Only 5% of points closest to the camera, with a dot
product below 80°, are retained.

Following the criteria above, we apply deformation, and cropping is applied
randomly to constitute Y, while a random rigid transformation is applied to X.
In addition, both X and Y are shuffled. This pipeline is executed on the fly for
each intraoperative cloud, with a processing time of 0.5 seconds per sample. Since
random parameters govern deformations and cropping, the model is exposed to
a continuously varying dataset during training, eliminating the need for a pre-
computed offline dataset. Conversely, validation is performed using deterministic
seeds to ensure consistency. The test set follows the same generation process as
validation but with a different seed. Since our approach is patient-specific, a new
dataset must be generated and the model retrained for every patient. By applying
early stopping based on the validation loss, training completes in approximately
12 hours.

3 Results

Matching Performances To evaluate the matching performance of our model,
we employed “liver 1”7 from the 3D-IRCADD-01 dataset and generated a test set
comprising 50 examples, following the procedure described in Section 2. We com-

FPFH Lepard LiverMatch Ours

Fig. 2: Qualitative results of predicted matches. Blue points denote the preoper-
ative point cloud, while orange points represent the partial and deformed intra-
operative cloud. Red lines indicate incorrect matches, and green lines highlight
exact matches relative to the ground truth.

pared our approach with three alternative algorithms: (i) FPFH — where FPFH
features [10] are extracted from both complete and partial point clouds, and cor-
respondences are established by matching each target point to its nearest source
point in the feature space using Euclidean distance; (ii) Lepard [5] — by lever-
aging their pre-trained model on the 4DMatch dataset, a collection of dynamic,
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Table 1: Matching Metrics

Methods |  MS (%) IR (%) Avg. #MP
FPFH 0.03+£0.11 0.03+0.11 <1
Lepard 1.6+ 1.5 24+2.2 4+3.75
LiverMatch 13+9 23 +13 39 £ 27
Qurs - ML + CL 36 +8 90 +£4 90 + 20
Ours - Full 45+ 7 92 +3 1125+ 175

real-world, partially overlapping point cloud pairs; and (iii) LiverMatch [17] —
utilizing the pre-trained model derived from liver data within the 3D-IRCADb-
01 dataset. Notably, “liver 1” is absent from the LiverMatch training set, as it
was also used for test set generation in their work, we call IRCAD-Liverl. We
evaluated performance using the Matching Score (MS)—defined as the number
of correctly predicted matches relative to the total available matches—and the
Inlier Ratio (IR), which represents the proportion of correct matches among
all predictions. Additionally, we report the absolute number of exact matches
predicted (#MP) by each algorithm. Table 1 demonstrates that our algorithm
significantly outperforms its competitors in identifying exact matches. Further-
more, we evaluated our algorithm under various loss configurations. Our results
indicate that optimal performance is achieved when all the three losses are active
(Full), confirming the synergistic relationship between overlap score estimation
and correspondence estimation. Figure 2 visually compares the quality of the
matches predicted by each method.

Matching t=T/2 t=T

FEM t=T (View 2) t=T (View 3)

Fig.3: Non-rigid registration results on IRCAD-Liverl: Source point cloud is
represented with gray points while target point clouds are represented in black
wireframe. Green lines represent the matching correspondences and FEM models
are represented with grid cells. Registered point clouds are presented at t=0,
t=T/2 and t=T are shown in 4 different views.
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Non-rigid Registration We present results on non-rigid registration using
biomechanical modeling. We use the framework SOFA [13] to generate a Fi-
nite Element model from the liver mesh and generated around 12000 tetrahedra
elements. We use a Young’s modulus of 1.5 KPa and a Poisson ratio of 0.45.
We compute Target Registration Errors (TREs) as the point-to-point Euclidean
distance between vertices of the non-visible part of the preoperative and intra-
operative meshes. We also report Fidicual Registration Errors (FREs). Results
shown in Table 1 using 10 random deformations demonstrate that we obtain very
low TREs with an average of 4.82+3.33 mm. FREs are also very low, 1.68+1.11
mm, suggesting few matching outliers and adequate registration. Moreover, our
method outperforms LiverMatch, which exhibits a high number of mismatches,
resulting in a TRE of 17.36 £+ 13.68mm and FRE of 28.76 £+ 21.30mm. Visual-
ization of the non-rigid registration and FEM model is provided in Figure 3. We
then tested our method on the DePoLL porcine dataset [8] where 3D intraoper-
ative point clouds reconstructed from the endoscopic images. We use a Young’s
modulus of 3 KPa and a Poisson ratio of 0.45. We report in Table 2 registration
results on 13 cases from DePoll dataset.

Fig.4: Qualitative results of non-registration on six cases from the DePoLL
dataset are presented, showing the endoscopic image, the matching, and the
registration from left to right. Preoperative point clouds are represented in gray,
intraoperative point clouds in black, and correspondences with green lines.

We obtain an average Hausdorff distance (HD) of 8.45 4+ 3.60 mm and an
average FRE of 15.90+6.41 mm, suggesting a good surface-to-surface registration
and good matching. Visualizations of six cases are provided in Figure 4. It is
important to note that this test differs from those proposed in other works [21],
as it involves registering the reconstructed point cloud with the preoperative
one, rather than with the reconstruction from the intraoperative CT scan.
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Table 2: Registration results on DePoLL dataset (results in mm).

Met. | Case0 Casel Case2 Case3  Case4 Case8 Casel0  Cased  Case6  Case7  Case9  Casell  Casel2 Avg

v
HD 11.12 8.44 6.62 6.23 15.45 10.17 12.04 8.12 5.65 6.93 6.88 5.98 7.75 8.45 + 3.60
FRE 27.68 18.68 12.53 12.23 32.98 26.68 23.02 10.43 9.46 15.04 8.84 10.54 9.83 15.90 + 6.41

4 Conclusion

We presented a novel method for intraoperative point cloud registration. By
leveraging a patient-specific partial and deformable data generation strategy
and training a Transformer-based matching network, our approach outperforms
traditional agnostic methods, demonstrating improved accuracy and robustness,
on synthetic and real surgical dataset.
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