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Abstract. Electroencephalography (EEG) provides a non-invasive win-
dow into the brain’s electrical activity, playing an essential role in various
brain—computer interface (BCI) and healthcare applications. In this pa-
per, we propose EEG-DINO, a novel foundation model for EEG encoding
based on a hierarchical self-distillation framework. By multi-view seman-
tic alignment, the model is able to extract multi-level semantic features
from EEG data, which captures a wide range of semantic information,
increasing the robustness against noise and variances inherent in complex
EEG signals. Moreover, acknowledging the unique heterogeneous spatial-
temporal dependencies in EEG signals, we design a channel-aware sam-
pling mechanism and a decoupled positional embedding scheme. They
independently address spatial and temporal dimensions, enabling the
model to capture the intricate structural characteristics of EEG signals.
We pre-train EEG-DINCEI on a large-scale EEG corpus spanning over
9000 hours, which consistently achieves state-of-the-art performance on
multiple downstream tasks. These results demonstrate the great effec-
tiveness of our self-distillation framework for EEG encoding.

Keywords: Electroencephalography (EEG) - Self-supervised learning -
Foundation models - Self-Distillation - EEG pre-training.

1 Introduction

Electroencephalography (EEG) records electrical activity on the scalp, providing
high temporal resolution, making it ideal for real-time brain activity monitor-
ing [15]. EEG is extensively used in the diagnosis and monitoring of neuro-
logical disorders, including epilepsy [19], sleep disorders [22], neurodegenerative
diseases [3] and neuroprosthetics [II2]. Effective encoding of EEG signals has
emerged as a vital step in effectively performing complex and diverse tasks,
as it enables the extraction of meaningful information from raw data, thereby
enhancing the accuracy and reliability [17].

3 The pre-trained weights and code for fine-tuning are anonymously available at: https:
/ /huggingface.co/eegdino/EEG-DINO.
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Early EEG analysis methods primarily employ deep learning (DL) with var-
ious neural networks [IT6/I8] to learn signal features. However, they typically
rely on supervised learning tailored to specific tasks or datasets, leading to chal-
lenges in generalization, especially due to limited data, high noise levels, stable
nature over short time intervals, and significant variations in EEG signal for-
mats. Recently, building on advancements of self-supervised learning (SSL) in
various fields [6/12], many works [8I20121] propose EEG foundation models pre-
trained on large-scale unlabeled EEG data, demonstrating the potential of SSL
in learning meaningful spatiotemporal features that generalize across subjects
and recording sessions. Nonetheless, these methods usually adopt reconstructive
objectives, which are ill-suited to handle the issues of the low signal-to-noise ratio
and the stable nature of EEG signals over short time intervals. As a result, they
tend to focus on noise reconstruction, limiting the ability of models to capture
discriminative neurophysiological patterns and meaningful temporal variations.

In this paper, we propose EEG-DINO, the first distillation-based founda-
tion model for EEG encoding. EEG-DINO adopts a hierarchical self-distillation
framework within a shared network architecture, enabling knowledge distillation
through self-supervised learning across multiple augmented views. This frame-
work leverages multi-view learning to achieve semantic alignment, enhancing
robustness and facilitating the extraction of multi-level semantic features from
complex, noisy EEG signals. Moreover, we introduce a channel-aware sampling
mechanism and a decoupled positional embedding scheme. They exploit the
unique structural characteristics of EEG signals by handling spatial and tem-
poral dimensions separately, enabling effective modeling of the heterogeneous
spatial-temporal dependencies inherent in EEG data. We note that our work
focuses on EEG foundation model learning based on the self-distillation princi-
ples and thereby is fundamentally different from early EEG distillation works
[4/5/14], which distill a pre-trained model to a small model for supervised learn-
ing on specific tasks. We extensively evaluate EEG-DINO on multiple down-
stream tasks, where it demonstrates superior performance compared to coun-
terpart methods, setting new state-of-the-arts, highlighting the promise of our
distillation-driven self-supervised learning for EEG encoding.

2 Method

This section outlines the hierarchical self-distillation framework with a teacher-
student architecture to pre-train EEG-DINO, as shown in Fig. Given the
raw EEG signals represented as X € RE*T where C denotes the number of
channels and T is the number of timestamps, we first devise a channel-aware
sampling mechanism to obtain multi-view inputs, allowing the model to capture
multi-level semantic information.

Subsequently, we utilize the time-frequency embedding (TFE) [20] to project
the raw signal X to a set of EEG tokens £. Notably, an EEG token is defined as
a 1-second temporal segment across all channels. Meanwhile, we introduce the
decoupled positional embedding (DPE) scheme to encode spatial and temporal
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Fig. 1. Overview of the hierarchical self-distillation framework to pre-train EEG-DINO.

positional dependencies separately, which is then integrated to £ to form the
input EEG tokens of the transformer for pre-training. In this context, the model
learns a set of features that capture temporal and spatial patterns in EEG data.
As a result, the pre-trained EEG-DINO can be adapted to conduct specific
downstream tasks.

2.1 Tailored Sampling and Positional Embedding for EEG Signals

Channel-Aware Sampling EEG inherently exhibits spatially distributed pat-
terns across sensor channels, where each channel corresponds to localized neural
activity in distinct brain regions. To exploit this spatial-temporal characteristic,
we design a channel-aware sampling mechanism specifically for EEG to cre-
ate three view types, forming the hierarchy for self-distillation across views. As
shown in Fig. [I] unlike conventional image cropping that extracts contiguous
spatial regions, our mechanism uniquely operates on EEG signals by adaptively
sampling subsets of channels and temporal segments to construct diverse per-
spectives. Global views retain a moderate proportion of sparse channels and
continuous temporal windows to preserve broad spatial-temporal patterns, local
views employ aggressive spatiotemporal reduction to focus on localized dynam-
ics and masked views integrate channel-wise and temporal-patch masking on
global views to simulate incomplete observations. This pipeline creates 12 di-
verse perspectives (2 global, 2 masked, 8 local) per sample to encourages the
model to learn robust representations resilient to channel variations, following
the perspective configuration in DINO.

Decoupled Positional Embedding After tokenizing multi-views signals using
TFE [20], the DPE performs spatial channel encoding and dynamic temporal



4 X. Wang et al.

encoding separately. The former applies a learnable projection that maps the
one-hot channel vector into an embedding P.. The later dynamically performs
channel-wise 1D convolutions along the temporal axis to produce the temporal
embedding P,. This design decouples channel and temporal embeddings, which
enables robust generalization across structural characteristics. The final patch
embedding combines both components through summation:

Embed(X) =P, + P; + & (1)

2.2 Pre-Training via Hierarchical Self-Distillation

Teacher-Student Architecture Our framework consists of a teacher model
and a student model, instantiating DINO-v2 principles for EEG representation
learning. The input sequence for this architecture is constructed by concatenat-
ing the class token (CLS) with patch embeddings. As shown in Fig. [1] the teacher
processes only global views to maintain stable target representations. The stu-
dent operates on all view types to produce robust feature representations. To
ensure stable training, the teacher parameters are updated through exponential
moving average (EMA) [7] of the student model parameters. This momentum
update mechanism prevents abrupt changes in the target representations while
allowing gradual refinement.

Hierarchical Self-Distillation We propose a hierarchical self-distillation frame-
work, where knowledge distillation is performed across views at different levels,
which forces the foundation model to learn robust representations.

Signal-level Distillation The distillation at this level applies to CLS of teacher
from global views and CLS of student from global, local and masked views. Fol-
lowing DINO v2 [12], as shown in Fig. |1} CLS is passed into an MLP layer followed
by a softmax operation to produce probability vector. For the teacher model, we
apply centering to the logits (pre-softmax outputs) by subtracting a momentum-
updated mean vector to obtain the probability vector. The cross-entropy loss is
then computed: £, = — > p; log ps where * denotes any one of the views, p; and
p; are the probability vectors from teacher and student models, respectively.
We can calculate weighted losses from global, local, and masked views at the
signal-level distillation:

Lsignal = LGiobal + LLocal + LMasked (2)

where Lagiopa; is the cross-entropy loss between teacher and student models for
global views; similarly, L£1ocqr and Lasqskeq are losses for local and masked views,
respectively.

Patch-level Distillation This distillation applies to the patch tokens (PT) of the
teacher model from the global views and the patch tokens PT of the student
model from masked views [23]. As shown in Fig[l] the respective probability
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vectors p; and ps from the teacher and student models are obtained in a similar
way to compute the loss: Lpaicn = — ), pelog ps over all masked patch tokens
indexed by ¢ at patch-level distillation.

Total Loss The final total loss for optimization is computed as the average of
the two weighted loss components:

L= ‘CS'ignal + ACPatch (3>

The student model obtained from the pre-training stage will be used as the
foundation model to be adapted to downstream tasks by either full-parameter
fine-tuning or linear probing.

3 Experiments and Results

3.1 Dataset and Setup

Pre-training Dataset We perform pre-training on the Temple University Hospital
EEG (TUEG) dataset [II], one of the largest publicly available EEG datasets.
This dataset contains over 30,000 clinical EEG recordings from more than 16,000
patients. Following CBraMod [20], the raw EEG data undergoes several pre-
processing steps: we select 19 common channels from the international 10-20
system (e.g., FP1, FP2, F3, F4, etc.), resample all signals to 200 Hz and split
them into 30-second epochs. Finally, a total of 1,109,545 EEG samples, over 9000
hours in duration, are retained for pre-training.

Downstream Datasets To demonstrate the generalization of our model, we sys-
tematically evaluate our model on several different types of downstream datasets:

TUEV [11] is a curated subset of the TUEG database annotated for six
typical events. Following protocols from BIOT [21], EEG signals recorded via 19
standardized bipolar electrode pairs (10-20 system) were downsampled to 200
Hz, and segmented into 112,491 5-second epochs. Training subjects were split
into an 80% training set and a 20% validation set.

TUAB [11] represents a curated selection from the TUEG database and have
been annotated as normal or abnormal. We have used the same preprocessing
method as TUEV. Finally, all EEG signals are resampled to 200 Hz and divided
into 409,455 10-second 19-channel samples.

SEED-V [10] is a multimodal emotion recognition dataset featuring five emo-
tions. It uses EEG recordings from 16 participants (open-source version) across
three sessions with 15 trials each. EEG signals, originally recorded at 1000 Hz
using 62 electrodes and downsampled to 200 Hz, were segmented into 117,744
one-second segments. Each session’s trials are evenly divided (5:5:5) into three
subsets for balanced experimental validation, following CBraMod’s setup [20].
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Environments and Settings The experiments are implemented by Python 3.11.11,
Torch 2.5.1+cul24, on eight H800 GPUs. All the models are optimized on train-
ing set, selected from the validation set and evaluated on the test set. We obtain
five sets of results with different random seeds and report the mean and standard
deviation values. We devise three different configurations: EEG-DINO-(S)mall,
EEG-DINO-(M)edium , and EEG-DINO-(L)arge as shown in Table

Table 1. Hyperparameters for EEG-DINO pre-training

Model Layers Hidden Size MLP Size Params
EEG-DINO-S 12 200 512 4.6M
EEG-DINO-M 16 512 1024 33M
EEG-DINO-L 24 1024 2048 201M

Baselines & Metrics The baselines of foundation models are from BIOT [21],
LaBraM-(B)ase [8], CBraMod [20] and the non-foundation models baselines are
from CNN-(T)ransformer [I3] and ST-(T)ransformer [I6]. To make head-to-head
comparisons, we fine-tune BIOT, LaBraM-B and CBraMod based on their public
code, pre-trained weights and public parameter settings under the same dataset
seeds as ours. We employ Balanced Accuracy (BA), AUC-PR and AUROC as
evaluation metrics for binary classification. And for multi-class classification, we
employ BA, Cohen’s Kappa and Weighted F1 Score. For model optimization and
selection, we designate AUROC as the monitoring metric for binary classification
tasks and Cohen’s Kappa for multi-class classification tasks.

3.2 Results

We performed experiments comparing linear probing and full-parameter fine-
tuning, where full-parameter fine-tuning updates all model weights including
the backbone and the added classification head, and linear probing updates
classification head only, keeping backbone parameters fixed.

Linear Probing Tables [2| and [3[ compare EEG-DINO-S/M/L with state-of-the-
art self-supervised EEG models across three benchmark datasets using a linear
probing protocol. EEG-DINO-S significantly outperforms counterpart methods
on multiple datasets (TUEV, SEED-V, TUAB) in terms of all metrics, while
using fewer or similar parameters. Our EEG-DINO performs exceptionally well
even without full-parameter fine-tuning, which demonstrate that EEG-DINO as
a foundational model has a strong encoding capability. Furthermore, increasing
model capacity (from Small to Medium and Large) consistently enhances EEG
representation learning, suggesting that scaling data and parameters leads to
more generalized pattern extraction for diverse downstream EEG tasks.
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Table 2. The results of linear probing on TUEV and SEED-V

Dataset Methods  Params  BA(%) Cohen’s Kappa Weighted F1
BIOT [21] 3.2M  33.27+£2.56 0.3835 4 0.0554 0.6792 £ 0.0288
LaBraM-B [§] 5.8M 34.61+2.25 0.3968 + 0.0329 0.6974 £ 0.0161

TUEV CBraMod [20] 4.0M 32.46 +2.72 0.3884 +0.1824 0.6889 £ 0.0625
EEG-DINO-S 4.6M 54.82+1.06 0.5673 £ 0.0023 0.7861 £ 0.0024
EEG-DINO-M 33M 58.80+0.68 0.6180 £ 0.0145 0.8111 £ 0.0066
EEG-DINO-L  201M 60.54 +0.53 0.6419 +0.0122 0.8214 4 0.0045
BIOT [21] 3.2M  24.61 £2.87 0.0798 +0.0361 0.2489 £ 0.0257
LaBraM-B [§] 5.8M 25.21£2.67 0.0854 £ 0.0342 0.2543 £ 0.0265

SEED-V CBraMod [20] 4.0M 25.36 & 2.57 0.0842 + 0.0384 0.2568 £ 0.0275
EEG-DINO-S 4.6M 29.81+0.35 0.1273 £ 0.0052 0.3035 £ 0.0063
EEG-DINO-M 33M 33.65+0.56 0.1707 £ 0.0047 0.3426 £ 0.0052
EEG-DINO-L 201M 35.79 +0.33 0.1984 +0.0029 0.3652 + 0.0041

Table 3. The reults of linear probing on TUAB

Methods Params  BA(%) AUC-PR AUROC

BIOT [21] 3.2M  73.08 £0.29 0.7849 £+ 0.0036 0.8013 £+ 0.0058
LaBraM-B [8] 5.8M 74.57+0.14 0.8081 £ 0.0009 0.8115 4+ 0.0014
CBraMod [20] 4.0M 67.85+1.33 0.7721 £ 0.0259 0.7826 £ 0.0452
EEG-DINO-S 4.6M 78.41 4+ 0.08 0.8666 £ 0.0006 0.8706 £ 0.0004
EEG-DINO-M 33M 79.15+0.11 0.8680 £ 0.0008 0.8763 £ 0.0010
EEG-DINO-L 201M 79.63 +0.07 0.8701 +0.0014 0.8814 + 0.0007

7

Fine-Tuning As shown in Tables [4] and [f] our experiments demonstrate that
EEG-DINO-S outperforms the baselines in all metrics on the TUEV and the
SEED-V datasets, showing enhanced inter-subject agreement and better general-
ization. In binary detection on the TUAB dataset, our model performs similarly
to the baselines while utilizing fewer parameters, highlighting its efficiency in
maintaining high performance with reduced complexity. Scaling to EEG-DINO-
M/L further boosts performance. Additionally, we use a randomly initialized
model (EEG-DINO-S*) for fine-tuning as a contrast to the pre-trained version.
It underperforms compared to the pre-trained versions, which further verifies
the effectiveness of our pre-training approach. While it still exceeds supervised
CNN-Transformer baselines, underscoring the architecture’s effectiveness.

Ablation Study To further evaluate the effectiveness of our proposed techniques,
we conduct three ablation studies on pre-training: w/o decoupled positional em-
bedding (DPE), random masking strategy and full cropping strategy. The re-
sults are presented in Fig. [J] which demonstrates that all three techniques are
effective across the three datasets used. This indicates that these techniques are
well-suited for EEG signals and can exploit the unique structural characteristics,
enhancing our model’s performance and robustness.
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Table 4. The results of fine-tuning on TUEV and SEED-V

Dataset Methods  Params  BA(%) Cohen’s Kappa Weighted F1
CNN-T [13] 3.2M 40.87+£1.61 0.381540.0134 0.6854 £+ 0.0293
ST-T [16] 3.5M 39.84 £2.28 0.3765 %+ 0.0306 0.6823 £ 0.0190
BIOT [21] 3.2M  52.81 £2.25 0.5273 4+ 0.0249 0.7492 £ 0.0082
LaBraM-B [8] 5.8M 64.09+0.65 0.6637 £+ 0.0093 0.8312 £ 0.0052

TUEV  CBraMod [20] 4.0M 59.42+1.32 0.5818 4+ 0.0149 0.7817 £ 0.0201
EEG-DINO-S™ 4.6M 50.20 + 1.74 0.4620 =+ 0.3960 0.7307 £ 0.2072
EEG-DINO-S 4.6M 65.16 £ 0.64 0.6654 £+ 0.0082 0.8356 £ 0.0046
EEG-DINO-M 33M 66.11 +0.95 0.6739 £+ 0.0123 0.8357 £ 0.0054
EEG-DINO-L 201M 66.79 +0.57 0.6809 +0.0094 0.8398 + 0.0049
CNN-T [13] 3.2M  36.78 £0.78 0.2072 4+ 0.0183 0.3642 £ 0.0088
ST-T [16] 3.5M 30.524+0.72 0.1083 £ 0.0121 0.2833 £ 0.0105
BIOT [21] 3.2M  38.37 £1.87 0.2261 4 0.0262 0.3856 £ 0.0203
LaBraM-B [8] 5.8M 39.76 +1.38 0.2386 £ 0.0209 0.3974 £0.0111

SEED-V CBraMod [20] 4.0M 38.994+0.25 0.2414 £+ 0.0013 0.3977 £ 0.0058
EEG-DINO-S™ 4.6M 38.83+0.33 0.2399 + 0.0046 0.3963 £ 0.0036
EEG-DINO-S 4.6M 40.63+0.45 0.2564 + 0.0067 0.4092 £ 0.0060
EEG-DINO-M 33M 41.38 +£0.32 0.2727 £ 0.0055 0.4234 £ 0.0052
EEG-DINO-L  201M 41.77 +0.40 0.2801 +0.0051 0.4315 + 0.0042

* Random initialization before fine-tuning.

Table 5. The reults of fine-tuning on TUAB

Methods Params  BA(%) AUC-PR AUROC

CNN-T [13] 3.2M  77.77+£0.22  0.8433 £ 0.0039 0.8461 4+ 0.0013
ST-T [16] 3.5M 79.66 +£0.23 0.8521 £ 0.0026 0.8707 £ 0.0019
BIOT [2]] 3.2M  79.59+0.57  0.8792 4 0.0023 0.8815 4 0.0043
LaBraM-B [§] 5.8M 81.40+0.19  0.8965 + 0.0016 0.9022 £ 0.0009
CBraMod [20] 4.0M 80.91 4+ 0.32 0.8906 £ 0.0018 0.8831 £ 0.0030
EEG-DINO-S* 4.6M 79.1740.16  0.8662 4 0.0017 0.8708 £ 0.0021
EEG-DINO-S 4.6M 81.37+0.36  0.8906 £ 0.0021 0.8981 4+ 0.0016
EEG-DINO-M 33M 81.55£0.32  0.8963 + 0.0011 0.9018 £ 0.0017
EEG-DINO-L 201M 82.07 +0.24 0.9012 + 0.0015 0.9100 =+ 0.0009

* Random initialization before fine-tuning.

4 Conclusion

This paper introduces EEG-DINO, a novel distillation-driven self-supervised
learning framework for EEG signal encoding. By integrating hierarchical self-
distillation with multi-view semantic alignment, channel-aware sampling, and
decoupled positional embedding, our approach effectively captures discrimina-
tive spatiotemporal EEG signal patterns. Extensive evaluations demonstrate su-
perior performance of EEG-DINO over counterparts. Our work underscores the
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Fig. 2. The results of ablation study on TUEV, SEED-V and TUAB (linear probing)

potential of self-supervised knowledge distillation for robust EEG representation
learning, paving the way for adaptive, scalable neurotechnology solutions.

Acknowledgments. This study was partially funded by the National Natural Science
Foundation of China (Grant No. 62176068, 623B2011, 62325301 and U24B20186).

Disclosure of Interests. The authors have no competing interests to declare that

are relevant to the content of this article.

References

Al-Saegh, A., Dawwd, S.A., Abdul-Jabbar, J.M.: Deep learning for motor imagery
eeg-based classification: A review. Biomedical Signal Processing and Control 63,
102172 (2021)

. Altaheri, H., Muhammad, G., Alsulaiman, M., Amin, S.U., Altuwaijri, G.A., Ab-

dul, W., Bencherif, M.A., Faisal, M.: Deep learning techniques for classification of
electroencephalogram (eeg) motor imagery (mi) signals: A review. Neural Com-
puting and Applications 35(20), 14681-14722 (2023)

Babiloni, C., Arakaki, X., Azami, H., Bennys, K., Blinowska, K., Bonanni, L.,
Bujan, A., Carrillo, M.C., Cichocki, A., de Frutos-Lucas, J., et al.: Measures of
resting state eeg rhythms for clinical trials in alzheimer’s disease: recommendations
of an expert panel. Alzheimer’s & Dementia 17(9), 1528-1553 (2021)

Fan, C., Zhang, H., Huang, W., Xue, J., Tao, J., Yi, J., Lv, Z., Wu, X.: Dgsd:
Dynamical graph self-distillation for eeg-based auditory spatial attention detection.
Neural Networks 179, 106580 (2024)

Ferrante, M., Boccato, T., Bargione, S., Toschi, N.: Decoding visual brain repre-
sentations from electroencephalography through knowledge distillation and latent
diffusion models. Computers in Biology and Medicine 178, 108701 (2024)

He, K., Chen, X., Xie, S., Li, Y., Dollar, P., Girshick, R.: Masked autoencoders are
scalable vision learners. In: Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition. pp. 16000-16009 (2022)

He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised
visual representation learning. In: Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition. pp. 9729-9738 (2020)

Jiang, W.B., Zhao, L.M., Lu, B.L.: Large brain model for learning generic rep-
resentations with tremendous eeg data in bci. arXiv preprint arXiv:2405.18765
(2024)



10

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

X. Wang et al.

Lawhern, V.J., Solon, A.J., Waytowich, N.R., Gordon, S.M., Hung, C.P., Lance,
B.J.: Eegnet: a compact convolutional neural network for eeg-based brain—
computer interfaces. Journal of neural engineering 15(5), 056013 (2018)

Liu, W., Qiu, J.L., Zheng, W.L., Lu, B.L.: Comparing recognition performance and
robustness of multimodal deep learning models for multimodal emotion recogni-
tion. IEEE Transactions on Cognitive and Developmental Systems 14(2), 715-729
(2021)

Obeid, 1., Picone, J.: The temple university hospital eeg data corpus. Frontiers in
neuroscience 10, 196 (2016)

Oquab, M., Darcet, T., Moutakanni, T., Vo, H., Szafraniec, M., Khalidov, V.,
Fernandez, P., Haziza, D., Massa, F., El-Nouby, A., et al.: Dinov2: Learning robust
visual features without supervision. arXiv preprint arXiv:2304.07193 (2023)

Peh, W.Y., Yao, Y., Dauwels, J.: Transformer convolutional neural networks for
automated artifact detection in scalp eeg. In: 2022 44th Annual International Con-
ference of the IEEE Engineering in Medicine & Biology Society (EMBC). pp.
3599-3602. IEEE (2022)

Peng, R., Du, Z., Zhao, C., Luo, J., Liu, W., Chen, X., Wu, D.: Multi-branch
mutual-distillation transformer for eeg-based seizure subtype classification. IEEE
Transactions on Neural Systems and Rehabilitation Engineering 32, 831-839
(2024)

Ranjan, R., Sahana, B.C., Bhandari, A.K.: Deep learning models for diagnosis
of schizophrenia using eeg signals: emerging trends, challenges, and prospects.
Archives of Computational Methods in Engineering 31(4), 2345-2384 (2024)
Song, Y., Jia, X., Yang, L., Xie, L.: Transformer-based spatial-temporal feature
learning for eeg decoding. arXiv preprint arXiv:2106.11170 (2021)

Sun, J., Shen, A., Sun, Y., Chen, X., Li, Y., Gao, X., Lu, B.: Adaptive spatiotem-
poral encoding network for cognitive assessment using resting state eeg. npj Digital
Medicine 7(1), 375 (2024)

Supakar, R., Satvaya, P., Chakrabarti, P.: A deep learning based model using rnn-
Istm for the detection of schizophrenia from eeg data. Computers in Biology and
Medicine 151, 106225 (2022)

Tasci, I., Tasci, B., Barua, P.D., Dogan, S., Tuncer, T., Palmer, E.E., Fujita, H.,
Acharya, U.R.: Epilepsy detection in 121 patient populations using hypercube pat-
tern from eeg signals. Information Fusion 96, 252-268 (2023)

Wang, J., Zhao, S., Luo, Z., Zhou, Y., Jiang, H., Li, S., Li, T., Pan, G.:
Cbramod: A criss-cross brain foundation model for eeg decoding. arXiv preprint
arXiv:2412.07236 (2024)

Yang, C., Westover, M., Sun, J.: Biot: Biosignal transformer for cross-data learning
in the wild. Advances in Neural Information Processing Systems 36, 78240-78260
(2023)

Zhao, W., Van Someren, E.J., Li, C., Chen, X., Gui, W., Tian, Y., Liu, Y., Lei, X.:
Eeg spectral analysis in insomnia disorder: A systematic review and meta-analysis.
Sleep medicine reviews 59, 101457 (2021)

Zhou, J., Wei, C., Wang, H., Shen, W., Xie, C., Yuille, A., Kong, T.: ibot: Image
bert pre-training with online tokenizer. arXiv preprint arXiv:2111.07832 (2021)



	EEG-DINO: Learning EEG Foundation Models via Hierarchical Self-Distillation

