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Abstract. Soft tissue sarcomas (STS) are a rare and heterogeneous
group of malignant tumors that arise in soft tissues throughout the
body. Accurate classification from whole slide images (WSIs) is essen-
tial for diagnosis and treatment planning. However, STS classification
faces a significant challenge due to patient-specific biases, where WSIs
from the same patient share confounding non-tumor-related features,
such as anatomical site and demographic characteristics. These biases
can lead models to learn spurious correlations, compromising their gen-
eralization. To address this issue, we propose a novel multiple instance
learning framework that explicitly mitigates patient-specific biases from
WSIs. Our method leverages supervised contrastive learning to extract
patient-specific features and integrates a bias-mitigation strategy based
on propensity score matching. Extensive experiments on two STS datasets
demonstrate that our approach significantly improves classification per-
formance. By mitigating patient-specific biases, our method improves the
reliability and generalization of the model, contributing to a more accu-
rate and clinically reliable STS classification. To facilitate direct clinical
application and support decision-making, the code, trained models, and
testing pipeline will be publicly available at https://github.com/Lanman-
Z/MPSF.

Keywords: Soft tissue sarcomas - Patient-specific bias - Whole slide
images.


https://github.com/Lanman-Z/MPSF
https://github.com/Lanman-Z/MPSF

2 W. Lin et al.

1 Introduction

Soft tissue sarcomas (STS) are a rare and heterogeneous group of malignant
tumors, accounting for approximately 1% of all adult malignancies [3]. STS can
arise at various anatomical locations, including the extremities, trunk, retroperi-
toneum, and head and neck, without a predominant site. STS exhibits exten-
sive histological and molecular heterogeneity, with over 50 recognized subtypes
[15], such as rhabdomyosarcoma (RMS), undifferentiated pleomorphic sarcoma
(UPS), leiomyosarcoma (LMS), liposarcoma (LPS), and synovial sarcoma (SS).
Accurate subtype classification is essential for guiding treatment decisions and
enabling personalized therapeutic strategies, as different STS subtypes show
highly variable responses to chemotherapy, radiotherapy, and targeted therapies.

The diagnosis of STS remains highly challenging due to significant patholog-
ical overlap among subtypes and inter-observer variability, leading to potential
misdiagnoses even among experts. Deep learning has shown promise in pathol-
ogy image analysis, often surpassing human performance [16]. Several studies
have explored its application in STS classification. For instance, Foersch et al.
[4] used DenseNet121 to classify regions of interest (ROIs) from five major sub-
types, while Tomohito et al. expanded the coverage to 11 subtypes [6]. Addition-
ally, some studies have focused on specific subtypes, such as rhabdomyosarcoma
[20,5,11], leiomyosarcoma [19], myxoid soft tissue sarcoma [18], and canine soft
tissue sarcoma [12]. However, most existing methods either rely on manually
annotated regions rather than WSI-level analysis or cover only a limited number
of subtypes, restricting their clinical applicability.

Applying deep learning to STS subtype classification posed two major chal-
lenges. As shown in Fig. 1, STS can occur in various anatomical locations, mean-
ing that WSIs may contain not only diagnostic features of STS but also infor-
mation related to the tumor location. Second, different subtypes exhibit demo-
graphic differences, which may also be embedded in WSIs. Such additional infor-
mation, termed patient-specific bias, is unrelated to the morphological feature
of STS subtypes and offer little diagnostic value, yet they are inevitably present
in WSIs. When these irrelevant features exhibit spurious correlations with sub-
type labels, models may rely on them for predictions rather than true diagnostic
cues, leading to compromised performance and poor generalization. Thus, iden-
tifying and mitigating these biases is crucial for improving model generation
and reliability. However, most existing studies overlook this issue, and common
multiple instance learning (MIL) methods fail to explicitly address patient-level
confounders, limiting their effectiveness in real-world STS classification.

To address this challenge, we propose a MIL framework that identifies and
mitigates patient-specific biases from a casual perspective. Causal inference pro-
vides a powerful tool for analyzing spurious correlations and has been success-
fully applied in pathology image analysis [8,9,1]. First, we analyze the presence
of irrelevant information in STS WSIs and identify patient-specific biases. Then,
we design a supervised contrastive learning method to extract patient-specific
features in WSIs. Finally, we inject these features into each training sample, mak-
ing them indistinguishable across WSIs and preventing the model from relying
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Fig. 1. Casual graph for STS classification. I and Y represent the WSI and prediction.
X denotes the true pathological feature. C denotes the patient-specific feature.

on them for STS classification. Extensive experiments on our datasets demon-
strate the effectiveness of our method. Our main contributions are summarized
as follows: (1) We propose a novel model-agnostic MIL framework tailored to
mitigate patient-specific biases, improving classification performance, generaliza-
tion ability, and reliability. (2) We innovatively propose a supervised contrastive
learning method for explicitly extract patient-specific information in WSIs. (3)
We introduce a bias-mitigation strategy that integrates patient-specific features
into each WSI, ensuring models focus on diagnostic-relevant patterns. (4) The
code, trained models, and a testing pipeline for new samples will be released to
support clinical decision making.

2 Method

We propose a novel MIL framework that mitigates patient-specific biases in
WSIs, as shown in Fig. 2. First, we analyze images from a causal inference per-
spective to separate diagnostic-related features from confounding patient-specific
information. Then, we introduce a supervised contrastive learning approach to
extract and encode such information. To minimize their influence, we aggregate
all patient-specific features into a confounder embedding, which is then inte-
grated with the original patch feature embedding for classification.

2.1 STS Classification from Causal View

In this section, we analyze diagnostic-related and patient-specific features in STS
WSIs. Diagnostic-related features include cell morphology, tissue architecture,
and key pathological patterns essential for diagnosis. In contrast, patient-specific
features refer to confounding information such as occurrence site and demo-
graphic characteristics. For example, if all WSIs from a LPS patient originate
from the retroperitoneum, a model may incorrectly associate retroperitoneal
features with LPS, leading to misclassification when encountering LPS in other
anatomical sites. Similarly, demographic differences can also introduce biases.
For instance, LMS predominantly affects middle-aged and elderly individuals,
while RMS is more common in children [17]. These spurious correlations can
mislead models, reducing generalization and reliability.
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Fig. 2. Overview. PSFE is trained to extract patient-specific features from WSIs, which
are summarized as prototypes. Each WSI is integrated with all PS prototypes to sup-
press the impact of PS feature.

We represent the above analysis using a causal graph [13] in Fig. 1, where
C represents the confounder, namely patient-specific biases. X denotes the true
causal factors, i.e., the diagnostic-related features of STS. Y represents the out-
come, i.e., the STS diagnosis. C' — Y represents a spurious correlation, which
arises due to dataset-specific coincidences and lacks generalizability. In contrast,
X — Y represents the true diagnostic process, where predictions are made based
on pathological features, reflecting valid medical knowledge. Ideally, the model
should minimize reliance on C' — Y and instead focus on X — Y.

2.2 Identifying Patient-Specific Information

The core idea of our method is to mitigate the impact of C' — Y. Therefore, the
first step is to identify C' from WSIs. C represents patient-level biases in STS
WSIs, such as specific occurrence sites and demographic differences. These con-
founding features are often subtle and may not be visually discernible. However,
regardless of their exact form, one thing is certain. WSIs from the same patient
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share similar patient-specific features, while those from different patients tend
to exhibit distinct patient-specific features. Based on this principle, we leverage
the patient-WSI association as a supervised signal and design a novel supervised
contrastive learning method to extract patient-specific features.

Specifically, we construct positive and negative sample pairs based on the
patient-WSI association. D = {(x;,v:,¢;) | 1 < i < N} represents the dataset,
where x; is the WSI, y; is the corresponding STS subtype label, and ¢; denotes
the patient to whom z; belongs. WSIs from the same patient form positive pairs,
while those from different patients form negative pairs. The sample pairs and
labels are defined in Eq. 1, where I(+) is an indicator function that returns 1 if the
condition is satisfied and 0 otherwise. Since our goal is to extract only patient-
specific information, we ensure that all selected sample pairs share the same STS
label, preventing diagnostic features from interfering with this process.

B={(zi,zj,ys =(ci = ¢;)) | yi = y;} (1)

We employ an MIL model as the feature extractor M(-) € R?, with a con-
straint to ensure that the slide-level embeddings of positive sample pairs are as
similar as possible. The loss function for training M(-) is defined in Eq. 2, where
s(+, ) denotes the cosine similarity.

L = —yplog s(M(z;), M(z;)) — (1 — ys)log(1 — s(M(z;), M(z;)))  (2)

2.3 Mitigating Patient-Specific Bias

Revisiting the causal graph, to reduce the interference of C', we enforce all
samples to have similar C. In this way, during model training, C' becomes
insufficient for distinguishing different WSIs, forcing the model to focus on
X. Specifically, we use M to extract patient-specific features from WSIs, i.e.,
H = {h; = M(x;) | ©; € Dirain}. We further cluster these patient-specific fea-
tures to obtain k patient-specific feature prototypes H, = {h? | 1 <i < k}. H,
represents the patient-specific features present in the dataset. During MIL model
training for STS classification, z; is input into M to obtain its patient-specific
feature h;. Since each x originally possesses different patient-specific features, we
determine the weight of each prototype in H,, based on the dissimilarity between
h; and each prototype. The higher the dissimilarity, the higher the correspond-
ing weight. We then perform a weighted average based on these weights and
prototypes, resulting in a confounding embedding Z; for x; (Eq. 3). Finally, Z;
is concatenated with the patch embeddings of z;, guiding the model to obtain
more accurate attention scores and prediction.

Zi= Y [L—s(hi,hP)] - hP (3)

hPEH,
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Table 1. Performance comparison of MIL models with and without our framework.
Models were trained on the training set of SARC-1 and tested on the testing set of
SARC-1 and all samples from SARC-2.

SARC-1 SARC-2
AUC ACC Fl-score AUC ACC F1l-score

w/o ours 0.8962 0.7598 0.5668 0.8490 0.6730 0.6280
ABMIL W/ ours 0.9164 0.7832 0.6506 0.8800 0.7280 0.6490
A 0.02020.0234 0.0838 0.0310 0.0550 0.0210

w/o ours 0.9112 0.7512 0.6228 0.8650 0.7170 0.6380
CLAM W/ ours 0.9148 0.7630 0.6266 0.9020 0.7280 0.6620
A 0.0036 0.0118 0.0038 0.0370 0.0110 0.0240

w/o ours 0.9016 0.7764 0.6122 0.8710 0.6850 0.6010
TransMII, W/ ours 0.9136 0.7856 0.6606 0.8910 0.7200 0.6460
A 0.0120 0.0092 0.0484 0.0200 0.0350 0.0450

Table 2. The ablation study on the embedding dimension (d) of PS features and the
fusion strategy.

SARC-1 SARC-2

AUC ACC Fl-score AUC ACC Fl-score
d=64 0.9170 0.7712 0.5954 0.8650 0.6810 0.6300
d=128 0.9164 0.7832 0.6506 0.8800 0.7280 0.6490
d=256 0.9164 0.7718 0.6014 0.8530 0.6730 0.6020
d=512 0.9118 0.7592 0.5448 0.8570 0.6810 0.6120
w /o prototyping 0.9000 0.7776 0.6194 0.8670 0.7360 0.6416
Opposite Fusion 0.9022 0.7652 0.5822 0.8440 0.6770 0.5760

Direct Concatenation 0.9094 0.7720 0.6284 0.8730 0.6978 0.6312

3 Experiments

Datasets. We collected the SARC-1 STS dataset, comprising 604 WSIs from
179 patients, covering five common STS subtypes: LPS (214), LMS (260), RMS
(50), SS (20), and UPS (60). Additionally, we obtained the SARC-2 dataset from
another hospital for external validation, which contains 254 WSIs.
Implementation Details. The patient-specific feature extractor is also an MIL
model, with the same architecture as the MIL model used for STS classification.
We constructed 1,876 positive and negative sample pairs from SARC-1 for train-
ing the feature extractor, and 340 pairs for validation, with no patient overlap
between the training and validation sets. The dimension of the patient-specific
features is set to 128, and cosine similarity is used for all similarity measure-
ments. The number of patient-specific feature prototypes is set to kK = 10. The
feature extractor used is UNI [2].
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Fig. 3. TSNE visualization of slide-level embeddings. (a) the patient-specific feature
extraction model, (b) the baseline model, (c) the baseline with our method but uses
direct slide-level concatenation, and (d) the baseline with our method.

Performance Comparison. We evaluated our method by integrating it with
ABMIL [7], CLAM [10], and TransMIL [14]. Performance was compared using
AUC, accuracy (ACC), and Fl-score. Models were trained with five-fold cross-
validation on SARC-1 and tested on SARC-2 for external validation. As shown in
Table 1, incorporating our framework consistently improved model performance
across all metrics, demonstrating its effectiveness in reducing patient-specific
biases and enhancing classification performance and generalization. The per-
formance gains were more pronounced on SARC-2; highlighting its ability to
mitigate spurious correlations and improve real-world applicability.

Ablation Study. First, we assess the impact of the patient-specific feature
dimension by evaluating different sizes: 64, 128, 256, and 512. Second, we examine
the effect of the fusion method defined in Eq. 3 by testing the following variations:
(1) Removing the prototyping process in Fig. 2(b), where all patient-specific
features are directly matched to the WSI without clustering into prototypes. (2)
Reversing the fusion strategy, where higher dissimilarity between the patient-
specific feature of WSIs and the prototypes in H results in a lower weight,
opposite to our setting (Eq. 4). (3) Directly concatenating Z (Eq. 3) with the
slide-level embedding of STS classification MIL.

Zi= Y s(hi,hP)-hP (4)

hPEH,
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Fig. 4. Comparison of attention maps. (a) the baseline model, (b) the baseline with
our method but uses direct slide-level concatenation, (c) the baseline with our method.

Table 2 presents the results, showing that the best performance is achieved
when d = 128. The fusion strategy we utilize yields the best results.

Analysis of Patient-Specific Features. To evaluate the effectiveness of patient-
specific features, we assessed the performance of the patient-specific feature ex-
tractor. During training, we used the SARC-1 dataset while holding out a subset
of patients. Following Eq. 1, we constructed a test set from the held-out patients
Notably, the patients in the test sets had no overlap with those in the training
set. The extracted patient-specific features from M(-) effectively distinguished
whether two WSIs belonged to the same patient, achieving AUC = 0.9594,
ACC = 0.8853, and F1-score = 0.8844. These results demonstrate that the
model successfully captures patient-specific information from WSIs.

Next, we investigate the extent to which patient-specific information is re-
tained in slide embeddings under different settings: (1) the patient-specific fea-
ture extraction model, (2) the baseline MIL model, (3) the baseline with our
method but uses direct slide-level concatenation, and (4) the baseline with our
method. We selected 5 patients, each with multiple WSIs, and extracted their
slide-level embeddings under these conditions. We then applied t-SNE for dimen-
sion reduction and visualization, examining the separability of WSIs based on
patient identity. Embeddings from the patient-specific feature extraction model
show clear clustering by patient identity. Baseline MIL model embeddings ex-
hibit strong patient-specific biases, with WSIs from the same patient clustering
together. Incorporating our framework significantly reduces this clustering ef-
fect, demonstrating its effectiveness in mitigating patient-specific biases in slide
embeddings.

Analysis of Attention Regions. We analyze whether our framework improves
the accuracy of attention regions. As shown in Fig. 4, the green outlines indicate
regions highlighted by pathologists as representative of the key features. In the
baseline model, high-attention patches mostly fall outside the annotated regions,
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whereas with our method, they align within these regions. This indicates that
our approach enables the model to learn diagnostically relevant features.

4 Conclusions

In this study, we aimed to mitigate patient-specific biases in STS classification
from WSIs. These biases introduce spurious correlations that mislead models
and hinder generalization. To address this, we proposed a novel MIL framework
to reduce the influence of patient-specific features. Extensive experiments on
two STS datasets demonstrated the effectiveness of our approach, consistently
improving classification performance. By suppressing patient-specific biases, our
method enhances model generalization and reliability, contributing to a more
accurate and clinically meaningful STS classification. The code, trained mod-
els, and testing pipeline will be available, enabling direct application in clinical
settings to assist doctors in decision-making.
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