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Abstract. Mammogram is the gold standard for early breast cancer
screening, and its integration with deep learning-based computer-aided
diagnosis (CAD) models has demonstrated significant advantages in im-
proving the accuracy of breast cancer diagnosis. However, due to dif-
ferences in mammography acquisition protocols and scanner models,
significant inter-domain variations exist in images obtained from dif-
ferent mammography devices. As deep learning models tend to over-
fit to domain-specific feature representations during training, models
trained on source domain often experience notable performance degrada-
tion when applied to cross-domain data, hindering their deployment in
dynamic clinical settings. Therefore, this paper proposes a novel domain
generalization approach for mammogram classification by suppressing
domain-specific features (MC-SDS). MC-SDS first employs an adaptive
channel filter to identify and drop channels that have a tendency to cap-
ture domain-specific features to suppress domain-specific features. Then,
by perturbing the low-frequency components, the model is encouraged
to learn from the high-frequency parts, further suppressing the domain-
specific features present in the low-frequency components. Experiments
conducted on a public dataset and two internal datasets demonstrate
that MC-SDS outperforms other benchmark methods.
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1 Introduction

In recent years, the prevalence of breast cancer has surpassed that of lung can-
cer, becoming the leading type of cancer globally [21]. Breast cancer accounts for
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nearly 30% of all cancers diagnosed in women, and recent data indicates a con-
tinuous upward trend in its occurrence. Early detection and swift intervention
of breast cancer cases are of paramount importance and are key to significantly
reducing patient mortality [18]. Mammogram is characterized by its rapid imag-
ing, sharp resolution, and an elevated signal-to-noise ratio, and is considered by
imaging experts as the preferred imaging method for early screening and diag-
nosis [2]. However, screening mammograms are typically assessed by radiologists
whose diagnostic accuracy is profoundly influenced by their professionalism [1].
Additionally, the examination procedure is not only cumbersome but also time-
intensive, resulting in superfluous expenditures and redundant allocation of re-
sources [15]. To address these challenges, numerous computer-aided diagnostic
(CAD) systems have been engineered to bolster radiologists’ effectiveness [20, 8,
9].

However, a major obstacle to deploying current deep learning systems into
medical imaging diagnostics lies in their lack of robustness to distribution shifts
between internal and external cohorts [3,12, 11], which often exist across multiple
mammography devices due to variations in the protocols for capturing images.
For instance, there may be significant differences in the appearance of images
obtained from different mammography devices. This disparity can deteriorate
the performance of trained models.

To tackle this challenge, domain generalization (DG) emerges as a more de-
manding yet realistic approach. It endeavors to develop a model trained across
various distinct yet interconnected source domains, with the objective of achiev-
ing robust performance across any unfamiliar target domain [6,7]. To achieve
domain generalization in mammogram classification, a natural approach is to
capture only features that are clinically relevant to the disease (i.e., domain-
invariant features). However, current domain generalization methods primarily
impose constraints on the entire network to supervise the model in learning
domain-invariant features. This method acts on the network’s prediction layer,
overlooking the possibility that the intermediate layers of the network may still
learn excessive irrelevant information.

To address the above challenges, this paper proposes a novel domain general-
ization approach for mammogram classification by suppressing domain-specific
features (MC-SDS). The main contributions of this work include: (1) MC-
SDS suppresses the erroneous impact of domain-specific features on the model,
thereby reducing the risk of incorrect predictions in new mammogram data do-
mains. (2) A dropout-based adaptive channel filter (ACF) is proposed to iden-
tify channels that tend to capture domain-specific features and adaptively drop
these channels. (3) A low-frequency perturbation module (LFPM) is introduced
to further suppress redundant domain-specific features within the low-frequency
information by perturbing the low-frequency components. (4) Experiments con-
ducted on a public dataset (INbreast) and two internal datasets (InH1 and InH2)
demonstrate that MC-SDS outperforms other benchmark methods.
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Fig. 1. Overview of the MC-SDS. The framework consists of two key components,
namely ACF and LFPM.

2 Methods

Problem Setup In the context of domain generalization, we work with a setup
involving N distinct source domains, denoted as Dy, = D}, D2.,..., DN each
characterized by its own distribution. The objective is to leverage these diverse
source domains Dy, to develop a model F' that will exhibit robust performance
when applied to a previously unseen target domain, referred to as Dye.

We assume that an iamge contains both domain-invariant features V; and
domain-specific features V. Specifically, V; could be features such as the edge,
shape, and curvature of a mass, which correspond to the characteristics observed
by radiologists. Beyond domain-invariant features, we incorporate Vs to bridge
the gap between domains in image data. Vy refers to features that appear only
in specific datasets or environments. Specifically, Vs is introduced by different
mammography devices during the imaging acquisition process. When the model
makes predictions in a new data domain, these features lose their effectiveness.

2.1 Proposed Architecture

The whole architecture of MC-SDS is shown in Fig. 1, including the following
steps: (1) Use Otsu’s [16] segmentation method to identify the boundary of
the breast, and then crop to remove the background. This preprocessing is fully
automated, and it has been proven that it will not lead to incorrect cropping [26,
19]. (2) The cropped image is fed into the feature extractor, which utilizes the
ResNet-50 backbone to generate the feature map. (3) Insert ACF in multiple
network middle layers, and for each sample, only one randomly activated ACF is
used to identify and drop channels that are prone to capturing domain-specific
features, thereby suppressing domain-specific features. (4) After the activated
ACF, LFPM is used to perform low-frequency reconstruction on the samples,
further suppressing the redundant domain-specific features in the low-frequency
information. (5) Use the fully connected layer to generate the final classification
result.
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2.2 Adaptive Channel Filter

The motivation behind ACF is that the features captured by the model’s chan-
nels can be categorized into domain-specific features and domain-invariant fea-
tures. Therefore, identifying and dropping those channels that tend to cap-
ture domain-specific features can effectively suppress domain-specific features,
thereby reducing the probability of the model making incorrect predictions on
new data domains. Since each domain has its own unique domain-specific fea-
tures, these features serve as the basis for the domain classification task.

For a sample x;, we initially derive the feature representation Fy(z;) €
REXHXW from the k-th intermediate layer. C represents the channel count, and
H, W are the height and width of the feature map. F(x;) is fed into an ACF. To
counteract the potential adverse effects of the ACF on primary network’s learn-
ing, we introduce a gradient reversal layer (GRL) [13], strategically placed prior
to ACF. To identify channels that are rich in domain-specific features, we rely on
the ACF’s performance in the middle layers as a measure of their significance.
We assume that channels which are most influential for domain classification are
potential carriers of domain-specific features. The correlation between individual
channels and domain-specific traits is determined by computing the weighted ac-
tivations that lead to accurate domain identification. For a given input Fy(z;),
Wwv" € RC is the FC layer weight of the ACF for the true domain label, we can
compute the scores s for all channels. Specifically, the importance of the j-th
channel within the feature map Fj(z;) is is scored by the expression:

s; =W - GMP(Fy(x,)); (1)

where ijd is the j-th element of Wy , and GMP is global max pooling. A
higher activation value suggests that the channel has a more significant impact
on domain prediction.

After scoring the channels, in order to reduce the domain-specific information
in the feature map, ACF choose and delete the most sensitive domain channels
during the training process. Specifically, to make the channel scores more dis-
criminative, we need to weight the scores s through two steps. First, through
normalization methods, each element s; of the score s is converted into proba-
bility values p;, making the sum of probabilities for all channels equal to 1:
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where C is the number of channels. Then, an exponential amplification is per-
formed on p; to obtain the weighted scores s'.

The higher the weighted score, the more likely the channel is to contain
domain-specific information. The weighted score is passed through a linear layer
to obtain a threshold score s;. A binary drop mask m is then created to select
channels for dropping, with each element of m is generated:

0, s, >s
mj = A (3)
1, s; < st
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Fig. 2. Filtered image. Fig. 3. Visualization results.

where j is the channel index.

Considering that the simultaneous use of dropout at multiple layers may
result in the loss of too many features and hinder the learning process of the
model,we introduce a multi-layer stochastic activation strategy. For each sample,
we randomly select a different network layer to activate dropout. The binary drop
mask only takes effect when the ACF in this layer is activated, and it guides the
ACF to generate the output G(z;). If the ACF is in a deactivation state, it will
not perform any processing on the input. Please note that ACF is only active
during training and disabled during inference.

2.3 Low-Frequency Perturbation Module

The motivation behind LFPM is the nature of spectral properties. As shown in
Fig. 2, we conducted high-pass and low-pass filtering experiments on mammo-
gram images. It can be observed that the high-frequency information describes
the edge structure of objects. The low-frequency components retain the smooth
structure and stylistic information of objects. For breast cancer diagnosis, infor-
mation such as the edges, shapes, and curvatures of lesions is crucial. Further-
more, since the low-frequency part retains most of the image’s energy (i.e., the
positional information of the target), it is inappropriate to directly remove the
low-frequency components. LFPM can suppress domain-specific features in the
low-frequency information by perturbing the low-frequency components, helping
the model to emphasize domain-invariant features in the high-frequency compo-
nents.

Given an input feature map G(x;) € RE*H*W that has been processed by
ACF, We initially derive the Fourier transforms of the input features:

H-1W-—

H(z;)(u,v,c) = Z Z G(wi)(c,h,w)e’ﬁ’r(%“*%”) (4)

h=0 w=0

=
=

g
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where j represents the imaginary unit, it is standard in our experimental setup
to center the low-frequency components. Subsequently, we incorporate a binary
mask M, an element of R™*", which is null everywhere except for the central
region where it takes a non-zero value:

M- 1, ifmax(’u—%
e 0, otherwise

%’) < r~min(2H,W) (5)

v —

)

where r denotes the ratio governing the dimensions of M, which serves to dif-
ferentiate between the high-frequency and low-frequency components within the
spectrum. Utilizing this mask, we isolate the low-pass filtered frequency compo-
nents as Hj(x;) and the high-pass filtered components as Hy (x;):

Hi(z;) = M ® H(x;) (6)
Hy(z;) = H(w;) — Hy(z;) (7)

where symbol ® represents the element-wise multiplication operation.

LFPM assumes that the low-frequency spectra across various samples fol-
low a Gaussian distribution. We use this to generate new low-frequency spectra
through resampling to substitute the initial spectra. For a set of input features
{G(x,)}E_,, where B is the batch size, we initially compute their Fourier trans-
forms and subsequently extract the low-frequency components. To streamline
the notation, we refer to the low-frequency and high-frequency components as
{Hfl}le and {Hg}le, respectively. Subsequently, we characterize the distri-
bution of each element within the low-frequency spectrum using a multivariate
Gaussian model. This model is anchored at the original element’s value, and its
variance is derived from the values of the same element across various samples:

B
Y2(H (u,v,c)) Z Hl (u,v,c) E[Hfl(u,v,c)]]2 (8)

The magnitude of variance X2 reflects the variation in intensity of elements,
accounting for potential domain shifts. We then resample each element’s proba-
bility within the low-frequency spectra from the estimated distribution:

Hi(z;) = Hi(z;) +e- D(H.), e~ N(0,1) (9)

Finally, H](x;) and H},(z;) are combined into a new frequency representation
H'(z;), and H'(z;) is converted back to the spatial representation through the
2D inverse fast Fourier transformation.

3 Experiments and Results

3.1 Dataset and Implementation details.

We used three Mammogram datasets: INbreast with 410 images, InH1 with 513
images from Siemens MAMMOMAT inspiration GE Senographe Essential, and
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Table 1. Model’s average accuracy across three datasets for different r-values.

[ » J o1 [ 02 | 03 | 04 [ 05 [ 06 | 07 | 08 [ 09 [ 1.0 |
| Acc | 7723 | 7747 | 7763 | 7787 | 7815 | 7790 | 7775 | 77.66 | 7750 | 7731 |

InH2 with 956 images from HOLOGIC Selenia Dimensions. Each dataset was
split into 90% training and 10% validation sets, with the entire dataset used
for testing. The input size was 224 x 224 and the model was implemented in
PyTorch on an RTX 3090 GPU. We used a pre-trained ResNet-50 on ImageNet,
trained with SGD over 50 epochs, a batch size of 64, and an initial learning
rate of 0.001, which decreased by 10% at the 80% mark. Model performance was
assessed using accuracy, with the optimal model selected based on validation set
performance and results averaged over five trials.

3.2 Results and Analysis

Hyperparameters Equation (5) introduces a variable r. It controls the degree
of alteration applied to the low-frequency components within the image. Increas-
ing r expands the perturbation range for low-frequency components. We have
tried different values of r and the results are shown in Table 1. We found that
manipulating the low-frequency segment of feature representations significantly
bolsters the model’s resilience against domain shifts. Furthermore, we note a
performance dip with higher mask ratios, implying that extensive alterations to
high-frequency image aspects may impede the acquisition of domain-invariant
features. Notably, the MC-SDS approach achieves optimal results at a mask ratio
r of 0.5. We select the value of r that optimizes the model’s performance.

Comparison with SOTA Methods To ensure fairness, several domain gen-
eralization methods based on ResNet-50 were selected for comparison with MC-
SDS. We compare with several augmentation based methods (i.e., MixStyle [25],
EFDMix [23], CSU [10]), feature decorrelation methods (i.e., CausEB [4], I%-
ADR [14],). As shown in Table 2, MC-SDS achieves the best results under un-
known domains in all settings. Specifically, we achieved an average performance
of 78.15% across three datasets. It is worth noting that MC-SDS significantly
outperformed the domain-invariant representation-based method I2-ADR by a
margin of 5.81%. This is because MC-SDS can explicitly suppress domain-specific
features in every intermediate layer of the network, rather than relying on su-
perficial statistical relationships.

It can also be observed that introducing ACF alone or introducing LFPM
alone can both improve the model’s accuracy. This indicates that both drop-
ping channels that tend to capture domain-specific features and perturbing low-
frequency components can suppress domain-specific features and enhance the
model’s generalization ability. Furthermore, using ACF and LFPM simultane-
ously can further enhance the model’s performance.
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Table 2. Comparisons with state-of-the-art domain generalization approaches: Acc
evaluation (%) of three datasets on unseen domains. ) represents test domains, e
denotes training domains.

InH1 O ° °
InH2 backbone . O . Avg.

INbreast ° ° O
ResNet-50 — 72.90 74.48 75.61 74.33
MixStyle [25] ResNet-50 73.34 76.80 71.14 73.76
FACT [22] ResNet-50 73.65 75.27 77.07 75.33
I*-ADR [14] ResNet-50 74.02 74.98 68.02 72.34
EFDMix [23] ResNet-50 71.82 76.46 70.06 72.78
MODE [5] ResNet-50 73.80 75.39 76.97 75.39
CSU [10] ResNet-50 71.73 73.74 75.61 73.69
XDomainMix [24] ResNet-50 74.00 76.40 76.40 75.60
CausEB [4] ResNet-50 75.30 76.40 75.20 75.63
ACF ResNet-50 74.85 78.13 78.54 777
LFPM ResNet-50 73.89 77.24 78.59 76.57
MC-SDS ResNet-50 75.82 78.87 79.76 78.15

Table 3. Classification accuracy under different ratios of available training data.

Training data ratio 20% 40% 60% 80% 100%
EFDMix [23] 49.10 71.50 74.50 75.20 76.46
MODE [5] 67.15 72.38 74.16 74.90 75.39
MC-SDS 71.23 73.95 77.00 77.82 78.87

Limited Source Data Experiment Due to the scarcity of medical data, it is
necessary to evaluate model’s average classification accuracy with limited train-
ing data. We evaluate MC-SDS on target domains (InH2) using partial training
data from source domains (INbreast and InH1). The classification accuracy on
the target domain is reported in Table 3. We observe that MC-SDS consistently
outperform EFDMix and MODE. Even with minimal data, MC-SDS outper-
forms other methods. This is because when there is a limited amount of data,
the model tends to overfit to domain-specific features (such as low-frequency
background noise from specific equipment). MC-SDS can suppress these features
and force the model to focus on domain-invariant features.

Visual Explanation To intuitively verify the claim that MC-SDS has learned
features that are invariant across domains, we used Grad-CAM [17] to compute
and visualize the regions of interest in three mammograms from the test set, as
shown in Fig. 3. The shade of color in the graph reflects the network’s malignant
probability towards the region. It can be seen that by adding ACF and LFPM,
the network corrected the previous misidentification of the lesion areas.
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4 Conclusions

To address the issue of insufficient generalization capability of deep learning
models in mammogram classification, this paper proposes a novel domain gener-
alization method for the classification of mammogram. MC-SDS integrates ACF
and LFPM. ACF suppresses domain-specific features by identifying and drop-
ping channels that tend to capture domain-specific features, reducing reliance on
device-style information. LEFPM further inhibits domain-specific features within
the low-frequency components by perturbing the low-frequency part, helping to
emphasize domain-invariant features in the high-frequency components. Experi-
ments conducted on three datasets (INbreast, InH1 and InH2) demonstrate that
MC-SDS outperforms other benchmark methods in terms of performance. Con-
sidering the class imbalance issue often present in mammogram datasets, which
may affect the model’s generalization ability for rare cases, addressing the class
imbalance problem will be a direction for future improvement.
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