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Abstract. Total body PET/CT systems, which enable unprecedented
image quality and ultrahigh sensitivity, are widely utilized for diagnosing
and treating diseases like tumors. Unlike regular protocols, dual-time-
point imaging (DTPI)– where patients undergo a dual PET/CT scan to
enhance lesion contrast – exposes them to higher radiation doses due to
an additional CT scan for PET attenuation correction and anatomical
localization. To mitigate radiation exposure, we introduce STMDiff, a
spatiotemporal matching diffusion model, which reuse CT images from
first scanning time point for PET attenuation correction at second scan-
ning time point. Spatiotemporal matching strategy implemented with
contrastive learning aims to find the k-best-matched CT images, which
enriches the multimodal features of STMdiff and bypasses the cross-
modal registration, facilitating the generation of attenuation-corrected
(AC) PET images alleviating alignment errors. Both qualitative and
quantitative results illustrate that the AC PET images from STMD-
iff not only obtain the best quantitative scores (PSNR: 37.72± 6.85 dB;
SSIM: 0.96±0.03; RMSE: 2.35±1.03), but also preserve metabolic infor-
mation. Moreover, clinical assessment results show that the standardized
uptake value (SUV) distribution of our method is more consistent with
that of real AC PET images4.

Keywords: Dual-Time-Point PET/CT Imaging · Spatiotemporal Match-
ing · Contrastive Learning

1 Introduction

PET/CT systems, combining the functional and anatomical information, have
been widely applied in oncology, cardiology, and neurology. Recently, the advent
4 Our code is available at https://github.com/LEE12365/STMDiff
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of total-body PET/CT systems have led to unprecedented levels of image qual-
ity and quantification accuracy with approximately 40-fold increased sensitivity
[1, 2]. Conventional PET/CT data is usually collected at a specific time point,
around 50 minutes after the tracer injection. Different from this regular scan-
ning protocol, dual-time-point imaging (DTPI) involves two PET/CT scans at
different time points (approximately 60 and 150 minutes), which result in the
PET images obtained at second time point with reduced background activity,
increasing the rate of lesions detection [3], as shown in Fig. 1. Although DTPI
has many advantages in tumor diagnosis, staging, and therapeutic evaluation, it
also limited to additional CT radiation caused by the second PET/CT scanning.

Attenuation correction (AC) has played an important role in PET/CT imag-
ing. It could correct gamma-ray attenuation effects and improve the visual in-
terpretation and quantification accuracy of PET images [4, 5]. For PET/CT
systems, CT imaging not only provides high-resolution structural information,
but also offer attenuation coefficients for PET attenuation correction. In this
case, ionizing radiation from CT becomes a major source of these CT-based at-
tenuation correction methods, especially in DTPI. Hence eliminating the need
of a second CT scan in DTPI has become an urgent priority.

~ 60min ~ 150min
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Imaging
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Fig. 1. The Illustration of DTPI Scanning Protocol.

Many deep learning (DL)-based studies commit to reduce CT radiation
dose for PET attenuation correction[6, 7]. Some methods attempted to gener-
ate pseudo-CT (sCT) images from non-attenuation-corrected PET images (NAC
PET). However, the presence of local or global estimation bias in sCT images
may introduce quantitative errors. Some approaches tried to achieve CT-free
attenuation correction, which directly synthesized AC PET images from NAC
PET images [8–10]. Despite these methods could directly eliminate CT radia-
tion, they are more sensitive to the image noise. Recently, diffusion models have
greatly developed in high-quality image generation, which not only improve im-
age generation quality but also enhance training stability [11–13]. Therefore, it
is promising to apply the diffusion model to achieve the CT-free attenuation
correction in DTPI for total-body PET/CT imaging.

With these considerations in mind, we introduce STMDiff, a two-stage net-
work architecture for multiplexing the first scanned CT image to assist in the
second PET attenuation correction. The pretrained multimodal spatiotemporal
matching network is designed to find k-best-matched CT images while diffusion-
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based attenuation correction network takes identified Top-k CT images as a
condition prior to synthesize AC PET images at second scanning time point.

In summary, we make the following contributions:
(1) STMDiff integrates contrastive learning to extract shared alignment and

identifies optimal matching within latent space, which provides a direct one-to-
one mapping between non-simultaneously acquired PET and CT data in DTPI
enhancing its potential application.

(2) STMDiff introduces a dual-stage network architecture based on diffusion
models with the identified k-best-matched CT images as prior conditions. Our
method has successfully repurposed CT images while avoiding the alignment
errors associated with rigid registration.
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Fig. 2. Overall framework of the proposed STMDiff. A shows the network details of
the multimodal spatiotemporal matching network, and B shows the details of diffusion-
based attenuation correction network.

2 Methodology

Given datasets Dpre and Dpost obtained in DTPI, where Dpre is the initial scan-
ning data in DTPI while Dpost contains the information gathered from the sub-
sequent scan. Both datasets consist of aligned image pairs {xd

i , y
d
i }Ni=1, where N

is the number of image pairs, d represents the datasets to which it belongs. xd
i

and ydi are images belonging to PET X ∈ RC×H×W and CT Y ∈ RC×H×W ,
respectively. The image size is C×H×W , where H and W represent the height



4 W.Li et al.

and width of images, C = 1. Fig. 2 illustrates the complete STMDiff framework.
The individual components are displayed in detail below.

2.1 Multimodal Spatiotemporal Matching Network

We can observe that both scans in DTPI from the same patient shares many simi-
lar attributes, like geometry. The previous work proved that modal-independent
information is useful in image matching [14]. Based on this, we map multi-
modal images into the shared space and then search for the optimal matching.
Then, we introduce spatiotemporal contrastive learning, where images of the
same anatomical structure correspond to similar representations, while those of
different anatomical structures correspond to diverse features in Fig. 2(A).

The objective of matching network is to learn function G1(·) and G2(·)
based on Dpre , which enables paired images in domain X and Y to the la-
tent space. In the multi-modal dataset Dpre , the image pair {xpre

i , yprej }i=j is
matched, {xpre

i , yprej }i ̸=j are viewed as distinct scenes and their latent represen-
tation are negatives pairs. The extracted latent representations are defined as
zix = G1(x

pre
i ) and ziy = G2(x

pre
i ), where G1(·) and G2(·) are implemented with

ResNet-19. The multimodal spatiotemporal matching network is trained to op-
timize the similarity among these latent representations. Specifically, it aims to
pull together the representations of similar images {zix, ziy}i=j , and push apart
the representations of dissimilar images {zix, ziy}i ̸=j .

Considering the generalization of contrastive learning[15], STMDiff takes de-
layed PET images xpost

i and CT images yprej as input in the inference stage.
By comparing the similarity between their latent representations, the matching
network identifies the k-best-matched CT images from first scan time point that
correspond to the second scanned PET image, where k fixed as 5.
Loss function: We randomly sample some data {xpre

i , yprej } at each training
session and trained the network to optimize the functions G1(·) and G2(·). The
InfoNCE loss function [16] for updating G1(·) and G2(·) is formulated as:

LX = −
∑
i∈M

log
exp(s(zix, z

i
y))× 1

τ∑
i/∈M,i̸=j exp(s(z

i
x, z

j
y))× 1

τ + exp(s(zix, z
j
x))× 1

τ

LY = −
∑
i∈M

log
exp(s(zix, z

i
y))× 1

τ∑
i/∈M,i̸=j exp(s(z

i
x, z

j
y))× 1

τ + exp(s(ziy, z
j
y))× 1

τ

(1)

where τ is a temperature coefficient to adjust the dynamic range and τ = 0.5 .
M is the sampling subset for training. L1 norm is utilized as s(·) to measure the
similarity of the extracted latent representations.

Due to the brief interval separating the two scans in DTPI, the geometrical
consistency of PET/CT images from the same patient is maintained. Next, we
apply morphological operations (opening, closing and threshold segmentation)
for PET/CT images to accelerate optimal matching. Then, the Dice loss Ldice

based on contour information for geometry constraint is introduced. In summary,
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the total loss function is defined as :

L = LX + LY + Ldice (2)

2.2 Diffusion-based Attenuation Correction Network

The main idea of diffusion models is to learn the target data distribution q(x0)
(AC PET images in our case) using a neural network [17]. When the data dis-
tribution is learned, we can synthesize a new sample. Diffusion models contain
the forward diffusion process and the reverse diffusion process: 1)The forward
diffusion process gradually adds Gaussian noise to the image while progressively
eroding the original details, eventually transforming the image into noise [18, 19];
2) The reverse diffusion process then learns to reconstruct the original image by
iteratively removing the noise, guided by the learned distribution, as shown in
Fig. 2(B). The formulas of the diffusion-based model are as followed:

q(xt|x0) = N (xt;
√
γtx0, (1−γt)I); xt =

√
γtx0+

√
1− γtϵ, ϵ ∼ N (0, I) (3)

where γt =
∏t

i=1 αi. since x0 is unknown during inference, the transition distri-
bution pθ(xt−1|xt) is used to approximate the reverse diffusion posterior:

pθ(xt−1|xt) = N
(
xt−1;µθ(xt, t), σ

2
t I

)
µθ(xt, t) =

1
√
αt

(
xt −

1− αt√
1− ᾱt

ϵθ(xt, t)

) (4)

Here, ϵθ denotes a neural network, and its training objective of ϵθ(xt, t) can be
formulated as follows:

Ex,ϵ,t∼[1,T ] ∥ϵ− ϵθ(xt, t)∥2 . (5)

Condition: Here we chose UNet as the ϵθ. To achieve PET attenuation cor-
rection instead of generating new samples, the network needs a input noisy
counterparts as additional condition. Therefore, (xt, t) changed to (xt, t, xNAC),
where xNAC denotes the input NAC PET images. Apart from handling xNAC

images, we also incorporate k-best-matched CT images as the condition. When
processing CT and NAC PET images within the diffusion model, we employ two
encoders: our pretrained embedder Gve following the variational autoencoder
(VAE) model derived from Stable Diffusion and the function G2(·). The param-
eters are fixed during the network training process. The function G2(·) maps
CT images to the latent space to obtain their representations zy. Moreover, Gve

processes the NAC PET images and generates their latent representations enac:

zy = G2(y),

enac = Gve(xnac),

c = concate(zy, enac).
(6)

Finally, the feature fusion is conducted in the latent space through the most
straightforward concatenation approach.
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Fig. 3. Visualizations of generated results for different structures (Brain, Lungs, Liver,
Kidney and Pelvis) with their corresponding PSNR and SSIM values. The best results
are highlighted in orange.

3 Experiments

Models and Hyperparameters: 1)For Multimodal Spatiotemporal Matching
Network: adaptive moment estimation (ADAM) optimizer was used to minimize
the loss L. The batch size was 128 with 300 epochs trained. The learning rate
was initially set at 1 e−4 and halved after every 100 epochs; 2)For Diffusion-
based Attenuation Correction Network: we used an exponential moving average
(EMA) with a decay rate of 0.999 [25]. The Adam optimizer was utilized with
the a learning rate of 1 e−4. We downloaded the Variational Autoencoder (VAE)
model from Stable Diffusion (Factor:8) and fine-tuned the VAE model on our
datasets. All experiments were performed within the latent space generated by
the VAE encoder, and the sampling results were subsequently reconstructed
into origin form using the VAE decoder[24]. The linear variance schedule t had
a maximum value of 1000. Ordinary Differential Equation (ODE) sampling was
used for our experiments. All the experiments were conducted on a NVIDIA
GeForce RTX 4090 with Ubuntu 24.04 LTS system.
Datasets and Preprocessing: All PET/CT images were acquired using the
uEXPLORER total-body PET/CT scanner. The study included 104 patients
underwent dual-time-point total-body PET/CT imaging. 84 subjects (56,532
slices) were selected for training, 10 subjects (6,730 slices) for validation, and 10
subjects (6,730 slices) for testing. The initial scanning time was about 60 minutes
after 68Ga-prostate-specific membrane antigen-11 (68Ga-PSMA) injection and
the second time was around 150 minutes. PET image are with resolution of
160× 160 and CT images are 256× 256. We resample the CT images to match
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the dimensions of the PET images. Before model training, DICOM-format PET
images were transformed to standardized uptake value (SUV) units.
Evaluation: Our comparison methods include UNET [20], CycleGAN [21],
Mamba [22], DDPM[23].To assess the quality of the generated AC PET im-
ages, three common metrics were used for analyses: the peak signal-to-noise ra-
tio (PSNR), structural similarity index measure (SSIM) and root mean squared
Error (RMSE). In addition to objectively assessing image quality with quan-
titative indicators, we performed regoin of interest (ROI) analysis on different
hypermetabolic regions to compare distribution consistency.

4 Results

Qualitative Results: Fig. 3 shows the qualitative results obtained from STMD-
iff and other comparison methods. The generated AC PET images by STMDiff
are visually close to the ground truth (GT), demonstrating the effective image
noise suppression effect. To quantitatively compare the results generated by dif-
ferent methods, we provide the corresponding PSNR and SSIM values. Compared
to NAC images, all methods achieve significant improvement on both quantita-
tive results and image quality. Among them, our proposed method obtain better
model performance with highest PSNR values (PSNR > 30.00 dB).
Clinical Assessment: In addition to the qualitative image analysis, we perform
a consistency analysis for the SUV distributions of the PET images, considering
the liver and kidney as ROIs, as shown in Fig. 4. The median and upper and
lower quartile scores of our results are approximately identical to those of the
GT as well as the shape of the violin plots. To evaluate distribution similarity,
we calculate the Pearson correlation coefficients (PCC) for different methods
within ROIs. STMDiff achieves highest PCC values (PCC > 0.96) in both liver
and kidney regions, which is beneficial to study metabolism. Moreover, the T-test
shows that the difference is statistically significant (p < 0.001).

Table 1. Quantitative results (Mean ± Std) on test data for different methods in terms
of PSNR, SSIM and RMSE. The best results are indicated in bold.

Methods PSNR ↑ SSIM ↑ RMSE ↓

NAC 30.07±6.90 0.83±0.11 3.50±1.96
UNET [20] 36.55±7.41∗ 0.89±0.25∗ 2.88±2.06∗

CycleGAN [21] 35.05±5.33∗ 0.95±0.04∗ 2.46±1.25∗

Mamba [22] 33.34±6.92∗ 0.95±0.05∗ 2.66±1.17∗

DDPM [23] 36.45±6.13∗ 0.95±0.04∗ 2.46±1.04∗

STMDiff 37.71±6.86∗ 0.96±0.04∗ 2.35±1.03∗

∗ denotes p < 0.05, corresponding to a significant difference.

Quantitative Results: Table. 1 reports quantitative metrics between GT and
synthesized AC PET for all methods. Compared with other baseline methods, the
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Fig. 4. Violin plots for generated AC PET images obtained by all methods within liver
and kidney. “PCC” denotes the Pearson correlation coefficient. “∗ ∗ ∗” denotes that the
p value is less than 0.01.

STMDiff generates AC PET with the highest quality, owning the lowest RMSE
(2.35±1.03), and highest PSNR (37.72±6.85 dB), SSIM (0.96±0.03). Since the
comparison methods directly generate AC PET images, the UNET model also
achieves good performance. While the Mamba method produces blurred images,
which may be caused by inadequate parameter training.
Ablation Study: Experimental results demonstrate the effectiveness of the
proposed method. We conduct ablation studies to demonstrate the effectiveness
of incorporating k-best-matched CT image priors. The baseline model utilize
only NAC images as priors to generate AC PET images. In contrast, STMDiff
additionally incorporated the k-best-matched CT images. The corresponding
results are presented in Fig. 5. And the quantitative results indicates that CT
prior significantly elevates generation quality.
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Fig. 5. Quantitative results for ablation study in terms of PSNR, SSIM and RMSE.

In our initial investigation, parameter k was set to 5. To further examine the
impact of the number of parameters k integrated into the diffusion model, a sec-
ond ablation study was conducted. We retrained the model with 1 to 5 CT image
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priors and quantitatively evaluated the results. The results indicate that the op-
timal quantitative metrics were achieved when k = 2 (PSNR: 38.19 dB, SSIM:
0.97, RMSE:2.25). Compared with those attained when k = 5, the PSNR in-
creased by 2.46%, the SSIM increased by 1.00%, the RMSE decreased by 5.86%.
This suggests that increasing the number of CT priors can enhance the perfor-
mance of the model, with the best results obtained at k = 2. Therefore, we plan
to further optimize the experimental results based on the optimal parameters in
future work to ensure the accuracy and effectiveness of our research.

5 Conclusion

We develop a STMDiff for PET attenuation correction in DTPI to eliminate the
radiation risks of repeated CT scan. The core components of STMDiff consist of
two networks: 1) The multimodal spatiotemporal matching network successfully
searched k-best-matched CT images from initial scan; 2) The diffusion-based
attenuation correction network takes identified Top-k CT images as a condition
prior to synthesize AC PET images at second scanning time point. Compared to
the state-of-art methods, the STMDiff excels in suppressing image noise (PSNR:
37.72 ± 6.85 dB; SSIM: 0.96 ± 0.03; RMSE: 2.35 ± 1.03) and retaining good
consistency of anatomical structures (PCC > 0.96) on test dataset, which shows
great potential in reducing additional radiation hazard of repeated scans.
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