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Abstract. The combination of multi-modal medical imaging for ischemic
stroke infarct segmentation is crucial for clinical treatment. However, ex-
isting methods often improve segmentation accuracy at the cost of ef-
ficiency, rendering them impractical for mobile health applications. To
overcome this limitation, we integrate Mamba, a state-space model for
long-sequence modeling, with convolutional operations to capture both
global and local dependencies. To further enhance the feature repre-
sentation, we incorporate multi-scale feature interaction and frequency-
domain processing. As a result, we propose a novel Efficient Frequency-
enhanced Multi-Scale Network (EFMS-Net) to achieve an optimal trade-
off between segmentation accuracy, inference speed, and parameter effi-
ciency. Extensive experiments on four datasets demonstrate the effective-
ness and efficiency of EFMS-Net. We release a new dataset to promote
further research in ischemic stroke infarct segmentation. The dataset is
available on GitHub.

Keywords: Ischemic Stroke Infarct Segmentation · Efficiency · Mamba
· Feature Interaction · Frequency-domain Processing.

1 Introduction

Ischemic stroke occurs when blood supply to a specific area of the brain is par-
tially or completely obstructed, resulting in high mortality and morbidity. Its

https://github.com/Nickapple02/EFMS-Net
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diagnosis and treatment heavily depend on timely intervention and neuroimag-
ing techniques, particularly Computed Tomography (CT) and Magnetic Reso-
nance Imaging (MRI) [1]. Employing image segmentation techniques to identify
and segment the infarct core can assist clinicians in making timely and accurate
treatment decisions.

In recent years, CNN- and Transformer-based models have dominated med-
ical image segmentation. SwinUNETR [2] uses a Swin Transformer encoder [3]
and a multi-scale decoder for efficient 3D segmentation, while MedNeXt [4] im-
proves accuracy by adjusting kernel size, channels, and layers. However, chal-
lenges such as limited receptive fields and the high computational cost of long-
range modeling remain, making these models impractical for resource-limited
environments like mobile health applications. UNETR++ [5] addresses these
with an Efficient Paired Attention (EPA) block to reduce computational burden.
However, its performance on high-frequency features, such as infarct regions with
blurred boundaries, remains suboptimal. Preserving high-frequency features in
CT and MRI images is particularly challenging due to variations in signal inten-
sity, texture, and shape, as well as the loss of details in deeper neural network
layers. These challenges highlight the need for improved edge-feature representa-
tion. MEA-Net [6] enhances boundary information with Edge Feature Extraction
(EFE), while DE-Net [7] improves boundary delineation using a specialized loss
function. However, both models still struggle with the computational efficiency
challenges addressed by UNETR++.

These limitations have driven researchers to explore alternative models that
balance accuracy, inference speed, and computational efficiency. One promising
approach is to employ Mamba [8], a State Space Sequence Model (SSM), to effi-
ciently model long-range dependencies with linear complexity. Building on this
idea, several studies [9,10,11] have integrated CNNs with Mamba, combining
the former’s ability to capture detailed local features with the latter’s strength
in modeling global dependencies. Another promising approach, instead, lever-
ages the frequency domain to extract discriminative features and enhance se-
mantic representation [12,13,14]. We propose an Efficient Frequency-enhanced
Multi-Scale Network (EFMS-Net) based on the typical U-Net structure [15],
which is well-known for its excellent performance in medical image segmenta-
tion, and further design an efficient encoder-decoder architecture built upon it.
Two novel blocks, Dual-branch Adaptive Frequency Fusion (DAFF) block and
Laplacian-enhanced Multi-Scale Attention (LMSA) block, are incorporated into
the encoder and skip connections of EFMS-Net.

Our primary contributions are as follows: (1) To improve segmentation in
regions with fuzzy boundaries and low contrast, the DAFF block extracts global
and local features via two parallel subnetworks. The block then applies the Dis-
crete Cosine Transform (DCT) to obtain frequency representations of these fea-
tures and utilizes the Adaptive Frequency Weighting (AFW) layer to adaptively
adjust the weights of all frequency components. (2) The LMSA block employs
direction-aware attention across multiple scales to enhance channel-spatial in-
teractions and utilizes the parameter-free Laplacian of Gaussian operator to
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improve edge representation. (3) A new dataset for 3D segmentation of ischemic
stroke is proposed, comprising 120 MRI scans annotated by experts.

2 Method

Fig. 1. The overview of the proposed EFMS-Net.

The overall architecture of EFMS-Net is illustrated in Fig. 1. The proposed
model integrates DAFF and LMSA block to enhance multi-scale feature ex-
traction and hierarchical information aggregation for stroke segmentation. The
encoder begins with a stem layer that applies a 4 × 4 × 4 convolution with a
stride of 4 to obtain the initial feature map f0 ∈ RC×D/4×H/4×W/4 from the
3D input volume I ∈ RC×D×H×W . This map is subsequently processed through
three encoder stages, each consisting of two DAFF blocks and a downsampling
layer. Additionally, the LMSA block are incorporated into the skip connections
to enhance multi-scale feature interaction. The decoder gradually restores resolu-
tion through four stages by aggregating features from skip connections. Finally,
transposed convolutions map the channels to segmentation targets, followed by
a sigmoid activation to generate the binary segmentation mask.
Dual-branch Adaptive Frequency Fusion Block: The DAFF block consists
of two parallel branches. In the first branch, inspired by [16], we use cascaded
3 × 3 × 3 depthwise convolutions followed by 1 × 1 × 1 standard convolutions,
with channel-wise GroupNorm and GELU activation applied between the convo-
lutional layers. The second branch employs the bidirectional Mamba model [17],
where the 3D feature maps are flattened into a sequence of 1D patch embed-
dings. These embeddings are then partitioned into s subsets with a step size of
s to capture dependencies between adjacent sampling tokens. Finally, outputs
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of the two branches, Mamba and Convcasc, are converted into their frequency
domain representation Fi using modified DCT [18], which is given by:

Fi =
N−1∑
d=0

N−1∑
h=0

N−1∑
w=0

xd,h,w cos
(

(2d+1)µπ
2N

)
cos

(
(2h+1)νπ

2N

)
cos

(
(2w+1)kπ

2N

)
s.t. i ∈ {0, 1, 2, . . . , G3 − 1}

(1)

where xd,h,w denotes the pixel intensity at position (d, h, w) within the 3D image
block x ∈ RC×N×N×N . The channel C is split into G3 groups, and µ, ν, k ∈
{0, 1, · · · , G − 1} represent the frequency indices along the depth, height, and
width dimensions of the block, respectively. When µ, ν and k in Formula 1 are
zero, it’s equivalent to Global Average Pooling (GAP), which captures only the
lowest frequency component. The multi-spectral frequency vector F is given by:

F = cat([F0, F1, · · · , FG3−1]) (2)

The Frequency Attention (FA) mechanism is introduced to learn the impor-
tance of different frequency components. Its AFW layer is designed to generate
learnable weights Θ ∈ RG3×1×13×1 for each component of F . Specifically, the
AFW block employs two 1 × 1 × 1 convolutional layers with ReLU and Lay-
erNorm, whose convolutional weights are trainable parameters that adaptively
adjust each frequency component. The output weights Θ are normalized along
the channel dimension using a SoftMax function. F is then reshaped into the
shape of RG3× C

G3 ×13×1, where the weight of each group corresponds to a fre-
quency component Fi ∈ R

C
G3 ×13×1. By performing element-wise multiplication

between Θ and F , the layer re-weights frequency features and outputs a refined
representation F ′, as follows:

Θ = SoftMax(AFW (F )) (3)

F ′ = ΘF = cat(θ0F0, θ1F1, . . . , θG3−1FG3−1) (4)

where θi and Fi represent the i-th components of Θ and F , respectively. Instead
of selecting only the top-k frequency components based on prior knowledge, as in
FcaNet model [12], the proposed method captures a broader range of frequency
components across the entire image block and dynamically reweights them.

The multi-frequency channel attention weights for global and local features
are denoted as β and β′, respectively. These weights adaptively modulate the
features by multiplication, and the whole process can be formulated as follows:

β = Sigmoid (FA(Mamba(f)) + FA(Convcasc(f))) (5)

f ′ = β ×Mamba(f) + β′ × Convcasc(f) (6)
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where β, β′ ∈ RC×1×1×1
≥0 and β + β′ = 1. The resulting feature maps f ′ are then

fused through a 1× 1× 1 convolution. Furthermore, a channel shuffle operation
[19] is employed to enhance cross-channel communication among feature maps.
Laplacian-enhanced Multi-Scale Attention Block: To maintain the spatial
consistency of multi-scale feature maps, LMSA block is applied to {fl}3l=1, mod-
eling the correlation between spatial and channel attention information. Specif-
ically, LMSA block performs directional pooling along depth, height, and width
dimensions to extract long-range dependencies while maintaining positional in-
formation in the orthogonal directions. The process is expressed as follows:

Y d
l (d) =

1

Hl ×Wl

∑
0≤i≤Hl

∑
0≤j≤Wl

fl(dl, i, j) (7)

Y h
l (h) =

1

Dl ×Wl

∑
0≤k≤Dl

∑
0≤j≤Wl

fl(k, hl, j) (8)

Y w
l (w) =

1

Dl ×Hl

∑
0≤k≤Dl

∑
0≤i≤Hl

fl(k, i, wl) (9)

where Y d
l ∈ RCl×dl×1×1, Y h

l ∈ RCl×1×hl×1 and Y w
l ∈ RCl×1×1×wl repre-

sent the outputs of the l-th feature map along the depth, height, and width
dimensions. Here, dl ∈ {0, 1, ..., Dl − 1}, hl ∈ {0, 1, ...,Hl − 1}, and wl ∈
{0, 1, ...,Wl − 1} are depth, height, and width indices. These outputs are ad-
justed to match the minimum channel dimension and then concatenated into
RCmin×(d1+h1+w1+...+d3+h3+w3)×1×1, followed by a shared 1 × 1 × 1 convolu-
tion to facilitate layer-wise feature interaction. The resulting outputs are split
along spatial dimensions back into Ŷ d

l ∈ RCl×dl×1×1, Ŷ h
l ∈ RCl×1×hl×1, and

Ŷ w
l ∈ RCl×1×1×wl . Finally, a 1 × 1 × 1 convolution followed by a sigmoid ac-

tivation is applied to each Ŷ d
l , Ŷ h

l , and Ŷ w
l to get the corresponding attention

weights. These weights are used to refine the original feature maps and a resid-
ual connection is introduced to preserve the original feature representations and
mitigate overfitting. The process is expressed as follows:

f ′
l = fl + fl × σ(Conv(Ŷ d

l ))× σ(Conv(Ŷ h
l ))× σ(Conv(Ŷ w

l )) (10)

The output f ′
l is processed through Laplacian of Gaussian (LoG) [20], de-

fined as LoG(f) = ∇2(f ∗G), which smooths the features using a Gaussian filter
to suppress high-frequency noise and then calculates the second-order deriva-
tive to capture edge information. However, directly computing the second-order
derivative can be computationally expensive. To improve efficiency, we approx-
imate the LoG by combining a Gaussian filter with 2× upsampling and 2×
downsampling to extract high-frequency information. The formula is as follows:

diffl = fl − upsample(downsample(fl ∗G)). (11)

Where G is a normalized 3D Gaussian kernel of size 5× 5× 5, and ∗ denotes the
convolution operation. Downsampling is performed by slicing the feature map to
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reduce its resolution, while upsampling restores the resolution by zero-padding
and applying Gaussian convolution to enhance the feature details. Finally, the
difference between the original and upsampled feature maps approximates the
high-frequency components.

3 Experiments

3.1 Experimental Setup

We use three public datasets (ISLES’22 [21],ISLES’18 [22], ATLAS v2.0 [23]) and
a self-constructed dataset for ischemic stroke lesion segmentation. The ISLES’22
dataset includes 400 multi-modal MRI scans (FLAIR, DWI, ADC) for pre- and
post-operative cases. ISLES’18 has 156 records from 103 patients, featuring per-
fusion maps (CBF, CBV, MTT, Tmax) and CT images (excluding 4D CTP).
ATLAS v2.0, one of the largest stroke imaging datasets, contains T1-weighted
images from 1,271 patients. Our self-constructed dataset comprises DWI images
from 120 patients, with in-plane dimensions ranging from 180×140 to 200×160,
and 36 to 44 along the z-axis. All images were resampled to (3.0, 1.0, 1.0) mm
voxel spacing and manually annotated by three clinicians using ITK-SNAP [24].

Table 1. Performance comparison of methods on the ISLES’18, ISLES’22, and ATLAS
v2.0 datasets. The evaluation metrics are DSC (%), HD95 (mm), P (M), and FLOPS
(G). Best values are in bold, and second-best values are underlined.

Methods ISLES’18 ISLES’22 ATLAS v2.0

DSC HD95 P FLOPs DSC HD95 P FLOPs DSC HD95 P FLOPs

CNN-based

nnUNet 60.5 10.1 29.9 84.9 79.4 10.9 30.8 566.0 61.1 23.0 31.2 479.0
UX-Net 55.6 15.0 51.1 300.5 80.0 9.9 51.1 3407.2 60.7 22.3 51.1 2884.5
MedNeXt 59.3 10.8 31.0 132.7 79.1 10.2 31.7 627.5 61.2 20.1 31.7 535.3

Transformer-based

nnFormer 54.1 14.1 62.4 71.0 79.5 10.1 140.7 281.3 58.8 24.5 131.2 261.1
UNETR++ 58.6 10.5 31.1 23.8 80.3 9.9 46.5 85.0 59.1 23.1 42.6 70.5

Mamba-based

U-Mamba 61.4 8.3 42.4 148.0 80.4 8.7 42.9 1165.7 62.3 23.3 42.8 990.6
LKM-UNet 56.5 11.1 62.7 187.8 78.4 11.1 64.0 1232.2 59.7 22.9 64.4 1047.0
LightM 53.6 12.4 5.1 40.3 78.7 9.1 5.1 117.3 59.3 23.6 5.1 99.9

Ours 62.7 8.1 2.5 9.5 81.8 7.3 3.8 224.6 62.6 18.8 3.8 187.8

For a fair comparison, all models were implemented in nnUNetv2 [25] and
trained with default settings for 1,000 epochs on the same preprocessed data.
Performance was evaluated using 5-fold cross-validation. To reduce overfitting,
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Table 2. Memory and efficiency comparison of methods on ISLES’18, ISLES’22, and
ATLAS v2.0 datasets. Evaluation metrics are TM (MiB), IM (MiB) and IT (case/s).

Methods ISLES’18 ISLES’22 ATLAS v2.0

TM IM IT TM IM IT TM IM IT

nnUNet 1739 1169 0.23 8507 2279 1.62 6531 2085 2.92
UX-Net 3537 2499 0.44 32107 3667 11.73 23775 3105 21.74
MedNeXt 3001 2411 0.29 17341 2669 2.81 14761 2565 5.21
nnFormer 2764 2348 0.28 16645 2542 2.62 14217 2456 4.81
UNETR++ 2143 965 0.78 5629 1471 1.75 4699 1359 3.12
U-Mamba 3777 2333 0.46 30432 6283 7.34 22529 5459 13.65
LKM-UNet 8981 4841 0.86 40680 6973 10.13 35035 6573 18.72
LightM 7079 5289 0.54 33503 3817 12.95 29347 3584 24.45

Ours 1401 917 0.25 5405 1403 1.59 4669 1475 2.91

Table 3. Ablation study for different modules of EFMS-Net on the four datasets.

Modules ISLES’18 ISLES’22 ATLAS v2.0 self-constructed

DSC P FLOPs DSC P FLOPs DSC P FLOPs DSC P FLOPs

Baseline 58.1 4.7 9.9 78.5 12.2 227.4 58.5 12.1 190.1 37.3 4.6 55.7
DAFF only 60.6 2.4 9.3 80.8 3.7 224.4 61.1 3.7 187.7 40.4 2.4 52.4
LMSA w/o LoG 61.1 4.7 10.0 80.6 12.2 227.5 61.3 12.2 190.2 39.6 4.7 55.7
LMSA 61.5 4.7 10.1 80.9 12.2 227.6 61.8 12.2 190.3 40.2 4.7 55.8
DAFF + LMSA 62.7 2.5 9.5 81.8 3.8 224.6 62.6 3.8 187.8 40.9 2.5 52.5

data augmentation was applied. The proposed model, built with Monai, used
a batch size of 2, a learning rate of 0.001, and the SGD optimizer, with a
loss function combining soft dice and cross-entropy loss. Input patch sizes were
96× 160× 160 (ISLES’22), 5× 224× 192 (ISLES’18), 128× 128× 128 (ATLAS
v2.0), and 40 × 192 × 160 (self-constructed dataset). All experiments ran on
a single A100 80GB GPU. Metrics included Dice Similarity Coefficient (DSC),
95th Percentile Hausdorff Distance (HD95), Number of Parameters (P), FLOPs,
Training Memory (TM), Inference Memory (IM), and Inference Time (IT).

3.2 Experimental Results

Comparison with SOTA Methods: In this section, we compare our method
with SOTA approaches on three public datasets. Specifically, we evaluate CNN-
based methods [4,25,26], Transformer-based methods [5,27] and Mamba-based
methods [9,10,11], The experimental results are summarized in Table 1 and Ta-
ble 2. EFMS-Net demonstrates the best segmentation accuracy, with an optimal
balance across the number of parameters, memory usage, FLOPs, and inference
speed on the three datasets. Although the segmentation accuracy of U-Mamba is
only slightly behind EFMS-Net, its parameters, FLOPs, memory usage, and in-
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Fig. 2. Visualization of ischemic stroke infarct segmentation results. Row 1 shows
ISLES’18 sample, Row 2 shows ATLAS v2.0 sample, and Row 3 shows ISLES’22 sam-
ple. Red regions indicate the ground-truth labels.

ference time are significantly worse. In the ISLES’18 dataset, EFMS-Net reduces
parameters and computational complexity by 17.0× and 15.6×, respectively. In
the ISLES’22 dataset, EFMS-Net uses 25,027 MiB and 4,880 MiB less memory in
the training and inference stages and is about 4.6× faster than U-Mamba. While
the FLOPs and inference memory of EFMS-Net are slightly higher than those
of the lightweight model UNETR++ on ISLES’22 and ATLAS v2.0, EFMS-Net
consistently demonstrates superior performance across all other metrics.

Visualization Results: We validate the effectiveness of the proposed method
by visualizing the segmentation results on three datasets, comparing them with
SOTA methods, as illustrated in Fig. 2. EFMS-Net demonstrates better align-
ment with ground-truth labels compared to SOTA methods. For cases with low
contrast (Row 1) and small infarct cores (Row 3), it achieves more accurate de-
lineation of infarct areas and shapes through effective integration of global and
local dependencies and edge feature enhancement.

Ablation Study: We perform ablation studies on four datasets, including a self-
constructed one, to explore the effects of different EFMS-Net modules, as shown
in Table 3. Specifically, replacing the DAFF module with an equivalent number
of Convblock modules shows that both DAFF and LMSA improve EFMS-Net’s
performance over the baseline, highlighting their effectiveness in capturing multi-
scale features and enhancing edge details. The dual-branch design of depthwise
separable convolution and Mamba greatly reduces computational cost compared
to traditional convolutional operations, while FA further improves the accuracy
by adaptively weighting frequency components. LMSA outperforms DAFF by
leveraging multi-scale channel-spatial interactions, and its LoG operator effec-
tively preserves high-frequency details. Integrating these components, EFMS-Net
achieves the best performance.
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4 Conclusion

In this paper, we propose the Efficient Frequency-enhanced Multi-Scale Net-
work (EFMS-Net), a novel approach to ischemic stroke infarct segmentation that
strikes a balance between accuracy, inference speed, and computational efficiency.
Specifically, we introduce the Dual-branch Adaptive Frequency Fusion (DAFF)
block, which captures both global and local dependencies from frequency and
spatial perspectives. Additionally, the Laplacian-enhanced Multi-Scale Attention
(LMSA) block enables multi-scale interactive attention and employs the Lapla-
cian of Gaussian (LoG) operator to enhance high-frequency details. Comparative
experiments and ablation studies on four datasets demonstrate the superior per-
formance of the proposed model in terms of segmentation accuracy and efficiency,
especially in resource-constrained environments.
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