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Abstract. The rapid advancement of medical foundation models cre-
ates unprecedented demand for large-scale training data, yet existing
medical repositories remain contaminated by heterogeneous mixtures of
high- and low-quality image-text pairs—a severe data pollution prob-
lem that significantly bottlenecks model performance and optimization.
While manual curation could theoretically ensure quality, it is impracti-
cal for managing large-scale datasets effectively. To address this critical
challenge, we introduce RefineNet—a scalable framework that systemat-
ically refines data quality by distilling multimodal large language model
(MLLM) insights into an offline reward model. RefineNet innovatively
decouples human decision-making for quality assessment into two key di-
mensions: image-text fidelity and semantic consistency. By strategically
filtering and curating datasets, RefineNet demonstrates remarkable per-
formance improvements across diagnostic tasks. Specifically, our method
selects 50% high-quality data subsets that outperform full-data baselines
by 9.15% in Recall@10 (retrieval), 85.59 AUC (classification), and 72.59%
accuracy (visual question answering). Moreover, RefineNet achieves no-
table agreement with human expert judgments (Pearson’s r=0.67), pro-
viding clinicians an auditable bridge between automated curation and
validation.

Keywords: Medical data curation · quality assessment · multimodal
learning · foundation models.
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FIG 1. Exceptional response in patient with germline PT EN R130Q mutation. (A) Germline PTE N mutation c.389G.A, pR130Q. CDC14,

phosphatase domain. Illustration from https://proteinpaint.stjude.org. (B) Immunohistochemistry demonstrating (i) absent PTEN staining in the

tumor and (ii) cy- toplasmic and membranous expression of pAKT in the 40% of tumor cells. (C) Computed tomography (CT) scans during the

patient’s time on capivasertib, with white arrows indicating axillary disease: (i), September 2015, baseline CT showing two areas of axillary

lymphadenopathy; (ii) January 2016, CT scans demonstrating partial response following 4 months of carboplatin-paclitaxel-bevacizumab

chemotherapy; and (iii) December 2016, CT scans following 11 months of capivasertib monotherapy demonstrating persistent complete

response before progression in February 2017.
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Fig. 1. Image-text mismatch examples. (a) Cropped histopathology image paired with
a general caption. (b) CT image incorrectly matched with a genetic mutation descrip-
tion. Both low-quality examples highlight the necessity of validation in image-text
datasets.

1 Introduction

Reliable medical foundation models require precise image-text alignment, yet
automated dataset curation often propagates systematic errors [1]. For instance,
PMC-OA seeks diverse image-text data by auto-cropping multi-panel figures, but
imprecise markers can cause misalignment and low-quality unverifiable data [2],
as illustrated in Figure 1. Consequently, models trained on quality-filtered sub-
sets outperform those using unfiltered datasets in diagnostic tasks, challenging
the assumption that larger datasets necessarily lead to better performance [3].

These quality gaps in AI systems increase clinical risks, as image-text mis-
matches can amplify diagnostic errors through self-reinforcing feedback loops [4].
For instance, AI decisions using error-labeled data raised tumor staging errors
2.3-fold [5]. This undermines model reliability and patient safety, emphasizing
the need for better assessment methods aligned with medical requirements [6].

However, current quality assessment methods fail to meet clinical needs.
Rule-based heuristics lack semantic understanding [7], while metrics like Clip-
Score prioritize generic semantics, overlooking medical-specific details [8]. Hu-
man evaluation, though the gold standard, is cost-prohibitive for large-scale ap-
plications [9], creating a trilemma of balancing clinical validity, scalability, and
cost efficiency.

To address these gaps, we propose RefineNet that bridges: translating the
clinical reasoning capacity of multimodal large language model (MLLM) [10]
into tractable quality dimensions and enabling auditability through interpretable
scoring mirroring human workflows [11]. Evaluations show RefineNet-optimized
data achieves superior performance (NIQE=6.18, Perplexity=26.95), with CLIP
models trained on its curated small datasets outperforming full-data baselines.
Unlike existing methods, RefineNet enhances evaluation accuracy, provides clin-
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ical interpretability, and aligns closely with human expert judgments, making it
suitable for medical applications.

Our work makes three key contributions:

– Introduce a novel quality assessment framework utilizing MLLM-annotated
datasets with RefineNet to enable efficient offline evaluation.

– Demonstrate that high-quality data curation consistently improves perfor-
mance across quality metrics and downstream tasks, proving the value of
quality-centric data scaling.

– RefineNet offers high human-aligned assessments, enabling reliable and scal-
able biomedical data curation with auditable human judgment.

2 Related Work

Data Quality Assessment Current quality assessment methods struggle to bal-
ance scalability with domain expertise. While rule-based approaches [12] provide
transparency, they miss semantic understanding. Feature-alignment techniques
like ClipScore [8] enhance cross-modal matching but retain pretraining biases
unsuitable for medical imaging nuances [13]. Though human evaluation sets the
medical gold standard [14], its expense prohibits large-scale application.

Automated Evaluation with MLLMs LLM-based frameworks like RLAIF enable
scalable assessment [15], while multimodal models show diagnostic potential [16].
However, API dependencies and output variability hinder clinical deployment.
Our solution distills MLLM capabilities into a deterministic reward model that
preserves interpretability without cloud dependencies.

Data Scaling Strategies Traditional scaling laws emphasizing quantity [17] con-
flict with evidence of diminishing returns from low-quality data [18]. Though
curriculum learning and coreset selection [19] address noise, they lack medical-
specific quality dimensions. Our framework introduces biomedical-aware scaling
through optimized multidimensional quality metrics.

3 Methodology

We construct our data quality assessment method through three steps: 1) Build-
ing a proxy dataset using decoupled criteria and MLLM annotations, 2) designing
a parameter-efficient reward model, and 3) training the reward model to identify
high-quality data. Figure 2 illustrates the pipeline.

3.1 Proxy Dataset: MLLM-Augmented Proxy Dataset Curation

Using MLLMs as human evaluator substitutes in automated assessments is
effective, but advanced models like Gemini are often closed-source and API-
dependent, limiting evaluation due to latency, costs, customization, and medical
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Fig. 2. The pipeline entails constructing a proxy dataset, training RefineNet, and scor-
ing the image-text dataset.

data privacy concerns [20]. To address this, we built a proxy dataset to gather
high- and low-quality human-centric samples with measurable quality margins,
training an offline reward model to generalize across various medical data do-
mains.

First, we use stratified sampling by ClipScore percentiles to create a diverse
subset from 1.6 million image-text pairs. To improve discrimination, we add
10% negative samples by corrupting images, text, and creating mismatches, as
in Figure 3 (a).

Subsequently, We analyzed 10,990 samples with Gemini-1.5-Flash [21], focus-
ing on image quality, text accuracy, and visual-text relevance. We also included
ClipScore for assessing concept similarity beyond human metrics. The instruc-
tions and distribution of scores are shown in Figure 3 (b). Finally, we normalized
the scores and generated 4.85 million contrastive triplets as proxy dataset for
reward model training.

3.2 Architecture: Multidimensional Quality-Aware Reward Model

We introduce RefineNet, a parameter-efficient reward model optimized with dis-
criminative signals to select high-quality data from a proxy dataset, capturing
the evaluation capabilities of MLLM and human judgment logic.

RefineNet employs a frozen CLIP encoder with ResNet50 [22] and PubMed-
Bert [23], pre-trained on medical data, to extract features. A trainable scorer
maps these to a shared space, combines their dot product, and fuses them. The
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Fig. 3. (a) Examples of corrupted images and texts. (b) Multidimensional assessment
instructions and the distribution of scores across each dimension

fused features are processed through multilayer perceptron (MLP) layers to gen-
erate a scalar quality score for the given image-text pair:

f(xi, xt) = MLP([ϕimg(xi)⊕ ϕtxt(xt)⊕ (ϕimg(xi)⊙ ϕtxt(xt))]) (1)

where ϕ is the encoder, ⊕ denotes concatenation, and ⊙ represents element-
wise multiplication. f(xi, xt) is RefineNet’s quality score for the image-text pair
(xi, xt).

3.3 Training Objective: Margin-Optimized Contrastive Learning

RefineNet aims to create a metric space that distinguishes sample quality by
mapping features so that high-quality samples cluster together and low-quality
samples are separated, using Margin to measure this difference. For the given
training samples (Chosen, Rejected, Margin), where c = (xc

i , x
c
t) and r = (xr

i , x
r
t )

represent chosen and rejected image-text pairs respectively, a binary rank loss
with margin is used to optimize RefineNet:

L = −E(c,r,m)∼D log σ(f(c)− f(r)−m) (2)

where σ is the sigmoid activation function, c/r are chosen/rejected samples and
m their quality margin. This objective enforces proportional score differences
aligned with human/MLLM assessments.

The final model enables efficient offline quality evaluation, distilling MLLM
judgment capabilities into lightweight parametric form while maintaining inter-
pretability through explicit quality dimensions.

4 Experiments

4.1 Experimental Setup

Dataset, Baselines and Evaluation Protocol We evaluate RefineNet on
PMC-OA [24], one of the largest open-source biomedical dataset containing 1.6M
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Table 1. Top 1k image-text pairs evaluated using image (NIQE, BRISQUE) and text
(Perplexity, LLM-TQE) quality metrics, with bold for best and underline for second-
best results. LLM-TQE scores from Llama-3.1-8b [28].

Model Image Quality Assessment Text Quality Assessment
NIQE ↓ BRISQUE ↓ Perplexity ↓ LLM-TQE ↑

ImageReward 7.18 30.15 2368.62 6.17
BlipScore 6.97 33.46 471.82 6.47
ClipScore 6.95 27.11 82.24 7.16
RefineNet 6.18 26.43 26.95 7.86

image-text pairs affected by contextual fragmentation. Baselines include: 1) Full
dataset training; 2) Random/Bucket sampling; 3) Existing metrics (ClipScore [8],
BlipScore [25], ImageReward [26]). Evaluation is conducted across three dimen-
sions:

– Image/Text Quality: Evaluate the individual image and text quality of
high-quality data from automated methods using no-reference metrics. NIQE
and BRISQUE [27] for images, Perplexity and LLM-based Text Quality Eval-
uator (LLM-TQE) for text [28].

– Downstream Tasks A fixed CLIP model is trained from scratch with high-
quality data collected via automated methods. Data quality is assessed in-
directly using downstream task metrics: retrieval (Recall@K on Roco [29]),
classification (AUC on MedMNIST [30]), and VQA (Accuracy on Slake [31]).

– Human Alignment: Evaluate the correlation of various quality assessment
methods with human scoring results using Pearson and Spearman scores to
determine their reliability and safety.

4.2 Evaluation of RefineNet for Image and Text Quality Refinement

RefineNet surpasses other data refinement methods, demonstrated by its supe-
rior performance in evaluating the top 1,000 high-quality images and texts from
the same test set. For image quality, RefineNet achieves the lowest NIQE and
BRISQUE scores, indicating high naturalness, clarity, and low distortion, with
ClipScore ranking second. For text quality, RefineNet records the lowest Per-
plexity, reflecting natural and coherent text, and the highest LLM-TQE score,
demonstrating superior text quality aligned with LLM standards.

4.3 Ablation Study of Multi-Dimensional Evaluation Criteria

Ablation studies demonstrated that Image-Text Consistency (ITC) surpassed
isolated Image Quality (IQ) and Text Quality (TQ) in tasks such as Visual
Question Answering (VQA), while ClipScore (CS) enhanced retrieval. Integrat-
ing ITC, IQ, TQ, and CS yielded the most effective results, balancing quality
assessment and semantic alignment for robust CLIP training.
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Table 2. Ablation study of multidimensional criteria (IQ: Image Quality, TQ: Text
Quality, ITC: Image-Text Consistency, CS: ClipScore).

IQ TQ ITC CS Retrieval VQA Classification
✓ × × × 40.77 60.53 83.39
× ✓ × × 39.72 58.83 83.74
× × ✓ × 42.85 61.81 84.37
× × × ✓ 49.30 59.95 84.90
✓ ✓ × × 42.55 58.67 84.48
✓ ✓ ✓ × 44.20 59.86 85.13
✓ ✓ ✓ ✓ 52.13 66.14 85.59

Table 3. Performance comparison of CLIP models trained on full-size and refined
datasets at 75%, 50%, and 25% ratios across retrieval, VQA, and classification tasks.

Ratio Model
CrossModel Retrieval VQA Classification

Image to Text Text to Image Closed Open Average of
12 DatasetsR@1 R@5 R@10 R@1 R@5 R@10

100% Fullsize 12.50 33.30 44.20 13.25 32.85 45.20 62.98 59.68 83.49

75%

Random 10.35 29.05 41.20 11.15 27.80 40.00 63.46 53.64 80.83
Bucket 12.05 29.25 41.80 11.30 28.20 41.00 62.74 54.72 81.31
Worst 4.30 14.30 22.00 3.50 12.30 20.40 62.98 53.79 80.89

ImageReward 13.10 34.35 46.40 12.70 32.90 44.05 66.34 55.65 81.62
ClipScore 14.50 36.10 48.85 14.25 35.15 46.70 63.70 58.91 83.33
BlipScore 14.10 36.00 46.80 12.65 34.75 45.85 66.34 55.81 81.00
RefineNet 15.35 38.00 49.75 14.85 35.60 47.80 65.14 55.81 83.39

50%

Random 8.80 24.80 35.15 8.50 23.60 33.90 66.82 57.51 81.82
Bucket 8.60 25.30 36.45 8.20 24.35 34.95 65.86 52.55 82.04
Worst 1.60 7.05 11.65 1.80 7.25 11.20 60.57 52.55 80.18

ImageReward 13.10 32.10 42.50 11.35 31.00 42.35 64.42 54.41 83.24
ClipScore 14.90 37.95 48.80 15.60 35.90 48.00 62.98 55.81 83.59
BlipScore 13.00 34.15 45.65 13.40 33.25 43.80 63.94 55.34 84.16
RefineNet 18.60 41.90 53.35 16.80 40.00 50.90 72.59 59.68 85.59

25%

Random 3.65 11.45 17.85 3.35 9.75 15.45 62.18 56.27 78.37
Bucket 3.35 12.30 18.30 3.70 11.10 16.55 62.98 53.79 80.33
Worst 0.15 0.60 1.40 0.05 0.95 1.80 52.88 42.10 72.44

ImageReward 6.05 17.80 26.65 5.75 17.15 24.90 57.93 52.86 81.68
ClipScore 9.85 25.95 36.85 8.10 24.00 34.45 62.25 57.20 80.88
BlipScore 7.15 19.45 28.05 7.30 19.05 27.05 60.33 54.72 80.86
RefineNet 10.65 27.65 38.85 10.00 27.55 37.80 63.70 57.82 82.13

4.4 Improving CLIP Performance with Less but High-Quality Data

RefineNet-curated data at 50% volume (777k pairs) outperformed full PMC-OA
(1.6M pairs) across tasks (Table 3). Retrieval R@10 (Image→Text) improved
by 9.15%, and VQA accuracy exceeded baselines despite 50% fewer samples.
Classification achieved higher average AUC than full-data training, excelling in 9
of 12 datasets. Control groups (random/worst sampling) performed significantly
worse, highlighting the necessity of quality-centric curation.

The results highlight the significant noise (at least 25%) in automatically
collected, large-scale medical datasets like PMC-OA, but show that a curated
high-quality subset can improve multimodal foundational models more effec-
tively than merely increasing data volume.



8 N. Zhang et al.

Table 4. Comparison of correlation metrics between automated methods and human
ratings. * sets the upper limit for RefineNet, as it is trained on distilled data from
Gemini 1.5 Flash, resulting in superior correlation scores.

Methods Correlation Metrics

Spearman Pearson P-Value

Gemini 1.5 Flash * 0.7158 0.7633 < 0.01

ImageReward 0.1824 0.2869 > 0.05
ClipScore 0.5171 0.4226 < 0.01
BlipScore 0.5987 0.6486 < 0.01
RefineNet 0.6226 0.6688 < 0.01
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ion fromanatio

0/100
Text Quality: 

y: 

: 45
100/180/

5555555555/100
Image-Text Consistency: : 300/100
Explanation: The CT image shows acceptable quality with

visible pathological details, but the text lacks clinical

context and fails to meaningfully connect the genetic

mutation (PTEN c.389G>A) to the radiographic findings,

resulting in low image-text consistency.

Human: 0.33

BlipScore: 0.52

Reward: 0.37

ClipScore: 0.53

RefineNet: 0.11

Image: Image: Image: Image: 

Image: 

Caption: Repeat endoscopy at 4!weeks with severe 

stricture in mid-esophagus.

Human: 0.76

BlipScore: 0.62

Reward: 0.22

ClipScore: 0.68

RefineNet: 0.89

Rating Scores and Explanation from Gemini 1.5 Flash:

Image Quality: 

Explanatio

y: 90

ion fromanatio

90/100
Text Quality: 

Quality:

ty: 85
y:y: 990/ity:

5/100

Image-Text Consistency: : 9595/100
Explanation: High-quality medical image reveals a

significant esophageal stricture with clear visualization

and consistent reporting.

Image: 

Image: 

Image: 

Fig. 4. Visualizations of data quality assessment examples show the input image (top-
left), paired text (middle-top), automated/human scores (top-right, with green/red for
highest/lowest), and Gemini 1.5 Flash’s ratings and explanations (bottom).

4.5 Human Alignment and Clinical Quality Factors

Five biomedical PhDs evaluated 100 image-text samples to test RefineNet’s
alignment with human judgment (Table 4). Gemini 1.5 Flash, despite its high
relevance, is a closed-source model limited to API calls, posing potential risks of
medical data leakage. In contrast, RefineNet aligns closely with human judgment,
supports offline operation, and requires minimal trainable parameters, ensuring
data security and reliable quality assessment. Furthermore, Figure 4 identifies
three key clinical quality indicators: (1) precise terminology (e.g., "methenamine
silver stain X400"), (2) clear annotations (e.g., distinct markers like "white ar-
row"), and (3) information density alignment (e.g. exact matches such as "4×3.3
centimeters" and "right renal vein"). High-quality pairs (human score > 0.85)
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use more specific terms and fewer ambiguities than low-quality samples. These
attributes correlate strongly with cross-modal retrieval performance, highlight-
ing their significance in developing reliable diagnostic models.

5 Conclusion & Disscusion

This work introduces RefineNet, a novel approach for medical data curation that
prioritizes quality over quantity, creating more reliable multimodal foundation
models. By distilling MLLM expertise into an offline reward model, it achieves
privacy-compliant, efficient quality assessment. This approach challenges tradi-
tional scaling by showing that high-quality data subsets can boost model perfor-
mance. RefineNet offers an auditable framework aligned with human expertise.
Current limitations include domain biases and static assessments, while future
research will focus on dynamic quality thresholds and clinician interventions to
improve model safety.
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