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Abstract. Medical report generation has made notable progress, but
most studies focus on chest X-rays, leaving CT report generation largely
underexplored. This task poses unique challenges, including sparse dis-
eased regions due to high-dimensional volumes, imbalanced distributions
of normal and abnormal samples leading to biased predictions, and ex-
cessive template sentences that may obscure critical findings. Recently,
large language models (LLMs) have demonstrated strong instruction-
following capabilities, producing reliable outputs when guided by well-
designed prompts, which provides a promising approach to address these
issues. To this end, we propose Dia-LLaMA, a framework adapted from
LLaMA2-7B for CT report generation with diagnostic guidance prompts.
To enhance the focus on diseased areas, we introduce a disease-aware at-
tention module to capture disease-specific information. Furthermore, we
propose a disease prototype memory bank to capture common disease
patterns, providing a reliable reference during diagnosis. Experiments on
a large-scale chest CT report dataset demonstrated that our method out-
performs previous approaches, achieving state-of-the-art results in both
clinical efficacy and natural language generation metrics. The code is
available at https://github.com/zhi-xuan-chen/Dia-LLaMA.
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1 Introduction

CT report writing is a crucial part of clinical practice, offering clinicians a com-
prehensive summary of findings from CT volumes while effectively highlighting
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critical abnormalities. However, this job is tedious as it requires examining a
series of CT slices and acquiring a comprehensive understanding of the CT vol-
umes. Therefore, automated CT report generation (CTRG) is highly valuable
for improving efficiency and alleviating the burden on clinicians. Inspired by the
remarkable language generation capability of large language models (LLMs),
several studies [9,23,1,5,7] have explored their application in report generation.
However, due to the relatively limited number of CT-report pairs, previous stud-
ies have primarily focused on chest X-ray (CXR) report generation, leaving
the potential of LLMs in CTRG largely unexplored. In fact, integrating LLMs
into CTRG is non-trivial and presents three key challenges: 1) Abnormal areas
are sparser in high-dimensional CT volumes compared to the relatively lower-
dimensional CXR images, making it more difficult for models to effectively cap-
ture and interpret clinically significant regions. 2) The prevalence of normal and
abnormal cases in reports may vary significantly for certain diseases [14,10].
This inherent data imbalance may cause the model to overlook infrequent ab-
normalities. 3) CT reports often follow a rigid template structure, with only
minor modifications to describe specific abnormalities [22,12,27]. This standard-
ized format causes models to be inclined to generate generic templates rather
than accurately highlight critical abnormalities.

In this paper, we propose a novel framework that incorporates LLMs to em-
power CTRG, mitigating the aforementioned challenges inherent to this task. To
enhance the perception of local diseased regions in CT volumes, we introduce a
disease-aware attention module to effectively capture disease-level features. To
improve the diagnosis of abnormalities, we propose diagnosing diseases by refer-
encing a set of learnable disease prototypes, which encode common representa-
tions of normal and abnormal samples across different diseases. These prototypes
are updated under the supervision of contrastive loss to ensure distinctiveness be-
tween normal and abnormal samples, providing a valuable reference for disease
diagnosis, especially for abnormalities that rarely appear in the dataset. Fur-
thermore, we propose emphasizing critical disease information by embedding it
into prompts for LLM. Leveraging the powerful instruction-following capability
of LLMs, this method enables the generation of coherent and comprehensive re-
ports that effectively highlight significant abnormalities. Experiments conducted
on a large-scale publicly available chest CT report dataset demonstrate that our
proposed framework achieves state-of-the-art (SOTA) performance in both clin-
ical efficacy (CE) and natural language generation (NLG) metrics.

2 Method

2.1 Framework

The overall architecture is shown in Figure 1. To integrate LLMs for report
generation, we employ a structured prompt that combines visual embeddings
with key diagnostic information. Our designed prompt comprises two segments:
P = {S,D}, where the first segment S = {s1, s2, . . . , sN} consists of special
tokens sn for visual embeddings and the second segment D = {d1, d2, . . . , dL}
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Fig. 1. The overall architecture. Disease-aware attention is employed to extract disease
features, which in turn update disease prototypes that capture common representations
across various diseases. Diagnosis results are generated by comparing disease features
with the prototypes. The resulting diagnostic information, along with the visual fea-
tures, is then converted into prompts for the LLM to generate reports.

represents diagnostic text prompt tokens dl for the lth disease. The N and L
denote the number of sn and dl, respectively. Let R = {r1, r2, . . . , rT } denotes a
generated report, where rt represents the token at timestep t and T is the length
of the report. The generation process of the LLM fl is formulated as follows:

rt = fl(P,R−) = fl(S,D,R−) = fl(s1, . . . , sN , d1, . . . , dL, r1, . . . , rt−1), (1)

where R− represents the generated report at timestep t − 1. This process is
optimized by minimizing the language modeling loss LLM :

LLM = −
T∑

t=1

log p(rt|s1, . . . , sN , d1, . . . , dL, r1, . . . , rt−1). (2)

To extract visual embeddings, a volume encoder fv is employed to encode the
ith CT volume Vi into patch features, which are then projected into the LLM’s
embedding space by a perceiver fp:

fv(Vi) = Ai = {A1
i , A

2
i , . . . , A

M
i }, (3)

fp(Ai) = Xi = {X1
i , X

2
i , . . . , X

N
i }, (4)

where Am
i ∈ Rc represents a patch feature, Xn

i ∈ Rd represents visual embed-
ding, c and d denote the feature and embedding dimension, M and N represent
the number of patch features and visual embeddings, respectively.
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To derive diagnostic information, we first apply disease-aware attention (Sec-
tion 2.2) to extract disease-level features Di from patch features Ai. To provide
a reference during disease diagnosis, we construct a disease prototype memory
bank (Section 2.3) to capture common representations of various diseases. The
diagnostic results are obtained by comparing disease features with prototypes
and then converted into diagnostic text prompts (Section 2.4) for the LLM.

2.2 Disease-Aware Attention

The previous work [10] utilized pooled patch features for disease diagnosis, which
may result in unreliable outcomes due to the mixed disease information. To alle-
viate this issue, we propose a disease-aware attention (DAA) module to extract
disease-level features from patch features. Specifically, we assign a set of learnable
attention weights to each disease. The patch features from the vision encoder fv
are element-wise multiplied by attention weights and subsequently aggregated
to obtain the disease-level features. This process can be formulated as:

Di =

M∑
m=1

(Softmax(WD)⊗Ai)m, (5)

where Di ∈ RL×c represents the aggregated disease features, WD ∈ RL×M×1

denotes the disease-aware attention weights and Ai ∈ R1×M×c encapsulates
the patch features. The operator ⊗ represents element-wise multiplication with
automatic broadcasting [19]. The resulting disease features Di are then utilized
for disease diagnosis.

2.3 Disease Prototype Memory Bank

To improve the diagnostic accuracy for infrequent abnormalities, we introduce
a disease prototype memory bank (DPM) as a reference during diagnosis. The
diagnostic results are obtained by comparing the similarity between disease-level
features and a set of learnable prototypes. Specifically, the DPM includes both
abnormal prototypes Pl

1 and normal prototypes Pl
0 to represent the charac-

teristic features of each disease in its presence and absence, respectively. The
prototypes are initialized from a standard normal distribution N (0, 1) and up-
dated via a contrastive loss [17], which pulls the positive pairs closer and pushes
the negative pairs farther. For the disease features Dl

i in our method, the positive
case Pl

yl
i

and negative case Pl
1−yl

i
are determined based on the disease label yli.

The contrastive disease-prototype loss LDP is defined as

LDP = − 1

BL

B∑
i=1

L∑
l=1

log
exp(Dl

i ·Pl
yl
i
/τ)

exp(Dl
i ·Pl

yl
i

/τ) + exp(Dl
i ·Pl

1−yl
i

/τ)
, (6)

where yli denotes the label of the lth disease, and τ is the temperature parameter.
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2.4 Diagnostic Text Prompts

The critical abnormality information is essential in medical reports [22]. Despite
the strong capabilities of LLM, directly capturing abnormalities from visual em-
beddings without additional guidance is still challenging, which is validated in
Section 3.3. Therefore, we introduce diagnostic text prompts (DTP), leveraging
the diagnostic results as instruction for LLM. Specifically, the diagnostic results
are converted into text prompts D, which follows a template description “The
{disease name} is [disease state]". For instance, the diagnostic result c1: Present
in Figure 1 is interpreted as The cardiomegaly is present in this image, where c1
represents the cardiomegaly disease.

The overall loss in our framework is defined as the sum of the disease-
prototype loss LDP and the language modeling loss LLM :

L = LDP + LLM . (7)

3 Experiments and Results

3.1 Datasets and Metrics

We adopted a large-scale CT report dataset (CTRG-Chest-548K [22]) to evaluate
our method and the compared methods. This dataset comprises 1,804 CT-report
pairs, with 80% of the data used for training and 20% for testing. Following previ-
ous works [10,26], we employ the pre-trained report labeler CheXbert [21] to ex-
tract disease labels. Despite being pre-trained on the CXR dataset (MIMIC [11]),
CheXbert remains effective in our experiments due to the similarity in content
between chest CT and CXR reports. While it originally identifies 14 diseases,
some are too rare in our CT reports, so we selected 8 diseases to be included in
the diagnostic prompt.

For evaluation, both NLG and CE metrics are adopted. NLG metrics include
BLEU [18], METEOR [6], and ROUGE-L [13]. Following the CE metrics setting
in [16,10], we assess Precision, Recall, and F1 score with CheXbert [21].

3.2 Implementation details

For comparison, we evaluated our model against the CT report generation meth-
ods SL-DG [22] and RadFM [25]. To ensure a fair comparison, we aligned the
LLM in RadFM with the one used in our experiments and fine-tuned it on the CT
report dataset. Given the limited research on CT report generation (CTRG), we
also compared our method with state-of-the-art (SOTA) approaches in chest X-
ray (CXR) report generation, including R2Gen [4], R2GenCMN [3], M2KT [26],
and PromptMRG [10]. These methods support multi-image input, allowing them
to treat the slices within a CT volume as multiple images for CT report gen-
eration. We adopt a pre-trained ViT3D [25] as our volume encoder, with each
input volume resized to 256×256×64. This encoder employs a 3D patch extrac-
tion strategy, partitioning the volume into multiple 3D patches, each of which
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Table 1. The performance of our model compared with other SOTA methods on
the CTRG-Chest-548K [22] dataset. ∗ indicates results cited from the original paper.
Our method is highlighted in green. The best results and the second-best results are
highlighted in bold and underlined, respectively.

METHOD
CE Metrics NLG Metrcis

Pre. Rec. F1 BL-1 BL-4 MTR RG-L

R2Gen [4] 0.207 0.121 0.144 34.11 23.39 21.40 47.75
R2GenCMN [3] 0.158 0.100 0.114 35.88 23.37 21.43 45.94

M2KT [26] 0.220 0.119 0.145 46.09 21.93 25.20 36.47
PromptMRG [10] 0.290 0.330 0.290 47.73 23.02 22.87 37.35

SL-DG∗ [22] - - - - 23.70 21.90 43.80
RadFM [25] 0.403 0.361 0.345 46.70 24.70 24.01 38.98

Ours 0.421 0.387 0.372 51.16 29.64 26.28 42.15

is embedded into a corresponding patch feature. We employ LLaMA2-7B [24]
as the LLM in all our experiments and adopt LoRA [8] for parameter-efficient
fine-tuning. In our configuration, LoRA is applied with a rank of 8, a scaling fac-
tor (lora_alpha) of 32, and a dropout rate of 0.1. During training, we utilized
AdamW [15] as the optimizer, with an initial learning rate of 5e-5, following a
constant learning rate schedule that includes a warmup phase. The model was
trained on two RTX 3090 GPUs for about 16 hours, built with PyTorch 2.0. The
training involved 20 epochs, with an effective batch size of 16. To optimize mem-
ory usage, we employed the ZeRO [20] stage 2 training strategy in conjunction
with gradient checkpointing [2].

3.3 Comparison and Analysis

The Table 1 shows the comparison results on CTRG-Chest-548K [22] dataset. We
observed that the proposed method achieves SOTA performance across all CE
metrics and the majority of NLG metrics. For CE metrics, our model surpassed
the second-best method by 4.5%, 7.2% and 7.8% in precision, recall, and F1
score, respectively. This demonstrates the superiority of our model in generating
reports with higher diagnostic accuracy. In terms of NLG metrics, our method
also achieved SOTA performance. Regarding the BLEU-1, BLEU-4, and ME-
TEOR metrics, our approach obtained improvements of 7.2%, 20%, and 4.3%,
respectively, compared to the inferior methods. The relatively lower ROUGE-L
score could be attributed to the inherent nature of the metric, which assesses re-
ports based solely on sentence matching without considering semantic similarity.
Therefore, methods that leverage memory mechanisms [4,3] can easily achieve
higher ROUGE-L scores by generating common template sentences. However,
for metrics like METEOR, which consider semantic relevance, our method out-
performs other methods by a significant margin, demonstrating that the reports
generated by our method exhibit superior quality.
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Table 2. Ablation study of each module on CTRG-Chest-548K [22] dataset.

DPM DAA DTP
CE Metrics NLG Metrcis

Pre. Rec. F1 BL-1 BL-4 MTR RG-L

✗ ✗ ✗ 0.403 0.361 0.345 46.70 24.70 24.01 38.98
✗ ✗ ✓ 0.415 0.336 0.347 45.74 27.05 24.80 42.29
✗ ✓ ✓ 0.424 0.347 0.358 44.22 26.38 24.34 42.68
✓ ✗ ✓ 0.437 0.313 0.339 44.06 27.10 24.46 44.5
✓ ✓ ✓ 0.421 0.387 0.372 51.16 29.64 26.28 42.15

Ablation Study To demonstrate the effectiveness of all the proposed compo-
nents, we conducted a thorough ablation study, as shown in Table 2. We adopted
RadFM [25] as the baseline, which lacks additional diagnostic information. For
the method that solely incorporates DTP, we directly input the pooled patch
features into a classification head to generate diagnostic prompts. We can see
its improvements in almost all metrics compared to the baseline, which confirms
the significance of incorporating diagnostic information for guiding LLM in re-
port generation. When the DAA is incorporated, the CE metrics show further
improvement, validating the significance of emphasizing disease information in
the volume features. After integrating the DPM, our complete method with all
proposed components achieved SOTA performance in most metrics. We also as-
sessed the method without DAA alone, which resulted in a subpar F1 score,
underscoring the essential role of fine-grained disease features in diagnosis. A
representative qualitative example is presented in Figure 3. It demonstrates that
our method captures more critical abnormality information compared to the
baseline and achieves higher diagnostic accuracy.

We also assessed the F1 scores for each disease separately to validate the
diagnostic performance of our method across diseases, as presented in Figure 2.
The diseases are arranged in ascending order based on the number of abnormal
samples, with the final group representing the average F1 score across all 8
diseases. We observed that the method using only DTP performed poorly when
the number of abnormal samples was limited compared to the normal samples.
This demonstrates that diagnosis based on the classification head can be easily
affected by data imbalance due to the lack of reference during diagnosis. In
contrast, our complete method with DAA and DPM achieved a significantly
higher F1 score, particularly for diseases with fewer abnormal samples. This
validates that our proposed method can address the challenge of data imbalance
by emphasizing disease features and providing diagnostic reference with learned
disease prototypes, thereby improving overall diagnostic accuracy.

Moreover, we conducted an ablation study on different prompt types to find
the appropriate one, as presented in Table 3. Specifically, the None prompt in-
dicates that no diagnostic result is used as the prompt. The Text prompt is just
the DTP proposed in Section 2.4, while Token prompt indicates we incorporated
additional special tokens <POS -l> and <NEG-l> to represent the disease di-
agnosis instead of text tokens. For the Feature prompt, we directly utilize the
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Table 3. The comparison of different
prompt types. None represents the base-
line with only visual embedding as the
prompt. Text represents the diagnostic
textual prompt. Token represents the spe-
cial token prompt, while Feature repre-
sents the disease prototype prompt.

Prompt B-4 Pre. Rec. F1

None 24.70 0.403 0.361 0.345
Text 29.64 0.421 0.387 0.372
Token 25.40 0.363 0.387 0.340
Feature 23.10 0.327 0.359 0.310

Fig. 2. Comparison of the F1 score (%)
of each disease across different settings.
The diseases are sorted in ascending order
based on the number of abnormal samples
in the dataset.

Thorax is symmetrical, the left fourth rib
is partially distorted, the lung window
shows that bilateral lung markings are
increased and disordered, the lung field
transparency is increased, calcification
and ribbon lesions are seen in both
lungs, multiple nodules are found in the
lung, the largest nodule is located in the
lower tongue segment of the left upper
lobe (SE4, IM159), solid nodule shadow,
size 15mmx10mm, lobulation and pleural
indentation can be seen. Bilateral
pulmonary hili are not large. The shape
of heart shadow and heart big vessels is
normal, and the mediastinal lymph
nodes are enlarged. Left pleural effusion
and pleural thickening.

Ground-Truth

Thorax is symmetrical. The lung
window shows that bilateral lung
markings are increased and disordered,
and the light transmittance of the lung
field is increased. There are multiple
calcifications in the right lung. Multiple
nodules can be seen in both lungs. The
largest nodule is located in the anterior
segment of the left upper lobe (SE5,
IM141), and the solid nodule shadow is
6mm x 4mm in size. Bilateral
pulmonary hili are not large. The shape
of heart shadow and heart big vessels
is normal, and no obvious mass or
enlarged lymph node is found in
mediastinum. Left pleural effusion and
pleural thickening.

Ours Baseline

Thorax is symmetrical. The lung window
shows increased bilateral lung markings and
right lung texture disorder. The transparency
of the lung field is reduced. Patchy high-
density shadows are seen in the lower lobe
of the right lung, and patchy dense shadows
are also seen in the upper lobe of the right
lung. Multiple solid nodules are seen in the
lower lobe of the right lung (IM161, IM214).
The diameter of the nodules is about 4-6
mm, and the larger one is about 6mm x
5mm, which is located in the outer basal
segment of the lower lobe of the right lung.
Bilateral pulmonary hili are not large. The
shape of heart shadow and heart big vessels
is normal, and no obvious mass or enlarged
lymph node is found in mediastinum.

Fig. 3. Qualitative example of the Baseline and our method. Green indicates the con-
sistent abnormality information, while Red represents the incorrect content.

disease prototypes Pl
1 or Pl

0 as prompt features, selected based on the predicted
diagnostic results. These features are then fed into the LLM, along with visual
features, to generate reports. The results indicate that the Text prompt obtained
the most significant enhancement relative to the None prompt, so we adopted
text prompts as the default prompt type.

4 Conclusion

In this work, we propose a novel CTRG framework called Dia-LLaMA, which
effectively adapts LLaMA2-7B [24] to generate reports with diagnostic guid-
ance prompts. Specifically, we adopt a disease-aware attention module to obtain
disease-level features, enabling fine-grained perception tailored to different dis-
eases. Additionally, a disease prototype memory bank is proposed to capture
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common representations of various diseases. The diagnosis results are obtained
by comparing disease features with their corresponding prototypes, effectively
mitigating the negative impacts of data imbalance by providing a reliable di-
agnostic reference. We then interpret the diagnosis results into textual prompts
as critical instruction for LLM to generate reports, achieving both linguistic
coherency and outstanding diagnostic performance. Experiments on the CTRG-
Chest-548K [22] dataset demonstrated the superiority of our method over other
SOTA methods. We acknowledge the limitation of the current work, which fo-
cuses solely on CT report generation. In future work, we will continue to explore
the potential of LLMs and develop a framework capable of generating reports
across all radiology modalities.
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