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Abstract. Chemotherapy is the standard first-line treatment for lung
cancer, and cellular death is an inevitable consequence of the process.
However, current methods lack high-throughput, label-free approaches
for accurately assessing cell death, and existing techniques struggle to
capture cellular heterogeneity, complicating the prediction of lung can-
cer prognosis. Therefore, we propose frequency vision Mamba (FViM)
for label-free cell death pathway prediction in lung cancer chemotherapy.
Specifically, we introduce multi-dimensional optical time-stretch imaging
flow cytometry (OTS-IFC) to capture high-throughput, multi-dimensional
cell images under various cell death states. To effectively extract key
features that are highly indicative of cellular heterogeneity, we propose
FViIM that integrates modeling remote dependencies of Mamba along-
side frequency domain analysis of Fourier Transform. FViM first employs
the frequency guided enhancement (FGE) module to enhance cellular
detail features in the high-frequency domain, while reinforcing global
contextual features in the low-frequency domain. The enhanced features
are then processed through the Mamba-based visual state space block,
which models the intricate relationships between different visual states,
achieving a holistic prediction of cell death states. Experimental results
demonstrate that FViM outperforms existing state-of-the-art (SOTA)
methods. Notably, FViM successfully predicts cell death pathways in
response to increasing cisplatin concentrations, demonstrating its poten-
tial for effective and promising applications in lung cancer chemotherapy.
Our code is available at https://github.com/yzygit1230/FViM.
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1 Introduction

Lung cancer remains one of the most serious global health challenges, causing
an estimated 1.8 million annual deaths globally, which is 18% of all deaths at-
tributed to cancer [10]. Among them, approximately 85% of lung cancer cases
are non-small cell lung cancer (NSCLC), which is the most prevalent subtype
[8]. Chemotherapy remains the cornerstone of lung cancer treatment, utilizing
a variety of chemotherapeutic agents specifically formulated to induce targeted
cell death through mechanisms such as autophagy and apoptosis, both of which
are immunologically “silent” forms of cell death [4]. Cell death is a double-edged
sword: it eliminates damaged organelles and promotes cell survival, but dys-
regulated autophagy can facilitate cell death by triggering apoptosis [26]. The
interplay between autophagy and apoptosis is intrinsic, and any disruption in
this dynamic balance can lead to uncontrolled proliferation or tumorigenesis [2].
Therefore, it is critical to develop a reliable method for predicting cell death
pathways in lung cancer chemotherapy.

Nowadays, scientists have developed various methods to investigate cell death
pathways. Flow cytometry [9] is a widely utilized technique for cell populations
analysis, but its reliance on staining agents may alter cellular states, and it lacks
spatial resolution. Transmission electron microscopy [15] offers exceptional reso-
lution for observing ultrastructural changes, but its complex sample preparation
limits its suitability for high-throughput applications. Fluorescence microscopy
[1] enables real-time monitoring of cell death events, yet its throughput is limited,
and it often depends on fluorescent markers that may affect cellular behavior.
Western blotting [16] is a standard technique for analyzing proteins involved
in cell death pathways, but it provides only static, end-point data and cannot
track real-time progression. Optical time-stretch imaging flow cytometry (OTS-
IFC) [20] is an emerging, label-free technique with high-throughput capabilities.
However, current implementations primarily focus on intensity-based cell im-
age analysis, limiting their ability to reveal detailed internal cellular structures
[21,25]. Despite these advances, extracting and characterizing cell death fea-
tures remains challenging due to the inherent complexity and heterogeneity of
the cellular environment. State space models (SSMs) [7], exemplified by Mamba
[6], have garnered considerable attention for their superior ability to capture
long-range dependencies through state transitions. Furthermore, Vision Mamba
[27] demonstrates the potential of Mamba in image analysis by its application
in natural images. However, Mamba often ignores fine-grained features, which
are essential for accurate cell feature extraction, particularly in the context of
cellular heterogeneity and dynamic processes such as autophagy and apoptosis.

To address the above dilemma, we propose a multi-dimensional OTS-IFC
that enables the acquisition of multimodal cell death images. We further de-
sign a frequency guided enhancement (FGE) module, integrated with a visual
state space (VSS) block, to propose a frequency vision Mamba (FViM), which
effectively extracts key features indicative of cellular heterogeneity. Comparative
experimental results demonstrate that FViM achieves superior feature extrac-
tion for distinguishing cell death states. Our main contributions are as follows: 1)
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We devise a multi-dimensional OTS-IFC system for label-free, high-throughput
acquisition of intensity and phase-contrast cell images, enabling detailed morpho-
logical analysis of diverse cell death populations. 2) We propose FViM, which
integrates the remote modeling strengths of Vision Mamba with the powerful
capabilities of the fast Fourier transform (FFT) to capture both local textures
and global semantics of cells. 3) FViM effectively performs both qualitative and
quantitative cell death pathway prediction as cisplatin concentration increases.
These promising results offer significant potential for clinical applications.

(a) Cell Culture and Collection
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Fig. 1. Overview of the proposed pipeline. (a) Flow diagram of cell sample preparation
and analysis. Scale bar: 10 pm. (b) Flow diagram of the frequency vision Mamba.
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2 Materials and Methods

2.1 Cell Culture and Treatment

We cultured A549 cells, a well-established in wvitro model for NSCLC, under
standard conditions (37°C, 5% COg, and 95% humidity) in growth medium
supplemented with 90% Ham’s F12, 10% fetal bovine serum, and 1% penicillin-
streptomycin. To induce autophagy, we cultured the cells with 10 ptM rapamycin,
a well-known inhibitor commonly used to induce autophagy, for 12 hours (So-
larbio, Beijing, China). To induce apoptosis, we cultured the cells with 50 pM
Carbonylcyanide-3-chlorophenylhydrazone (GLPBIO, CA, USA) for 12 hours.

As depicted in Fig. 1 (a), we cultured A549 cells (ATCC, Manassas, VA,
USA) with cisplatin (GLPBIO, CA, USA), a platinum-based chemotherapeutic
agent widely employed in clinical oncology, at concentrations of 7.5, 15, 30, and
60 mM for 24 hours. We used Dimethyl sulfoxide as the control group. Post-
treatment, we collected cells for subsequent cell death analyses.

2.2 Multi-Dimensional Optical Time-Stretch Imaging Flow
Cytometry

To analyze post-culture cells, we employed multi-dimensional OTS-IFC, which
enables high-throughput acquisition of intensity and phase cell images in a label-
free manner. As shown in Fig. 1 (a), multi-dimensional OTS-IFC consists of
time-domain stretching and phase interference imaging. Specifically, the light
source is a Titanium-sapphire laser (Coherent Inc., Santa Clara, CA, USA, model
Vitara-T-HP), generating femtosecond pulses centered at 800 nm with a spec-
tral bandwidth of 40 nm and a repetition frequency of 80 MHz. These pulses are
stretched to 2.8 us by a single-mode fiber spanning 1.55 kilometers, with a group
velocity dispersion of -186 ps/nm. Subsequently, the pulses are split into two in-
dependent stretched laser beams by a beam splitter (Thorlabs Inc., Newton, NJ,
USA, model BS026) to create object and reference lights. The reference light
achieves signal interference by introducing a time delay, while the object light
passes through a diffraction grating (Thorlabs, GR25-1210, New Jersey, USA).
The diffraction grating generates a beam of one-dimensional (1D) rainbow light,
which is focused onto a cell within the microchannel of the microfluidic device
using an objective lens (Olympus, LCPlanN, 50x, NA=0.65, Japan). Then, the
1D rainbow light carrying cellular information converges through a symmetrical
structure, including an identical objective lens and diffraction grating, and com-
bines into object light. The reference and object lights interfere and are captured
by a photodetector (Newport, 1544-B, California, USA). The interference signal
is processed by an oscilloscope at a sampling rate of 40 GSa/s into a digital
signal, further transformed into intensity and phase cell images via MATLAB.

2.3 Frequency Vision Mamba

Fig. 1 (b) provides an overview of the proposed FViM. FViM first concatenates
the input intensity and phase cell images at the channel level. Then, the FGE
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module enhances both local and global characteristics in the frequency domain.
Following this, FViM employs consecutive stacked VSS blocks to further extract
and refine feature representations. Finally, FViM achieves cell state recognition
and cell death pathway prediction.

Frequency Guided Enhancement Module Since the Fourier Transform [19]
reveals that high-frequency components capture fine-grained details, while low-
frequency components provide global semantic information, we design the FGE
module to enhance feature representation in the frequency domain. As shown
in Fig. 1 (b), the FGE module first applies the FFT to the input feature map
X, obtaining the frequency domain features X¢,..,. By multiplying with high-
and low-frequency masks, we separate the high-frequency features Xp;q, and
low-frequency features Xj,,,. Next, we modulate the real and imaginary parts
of both the high- and low-frequency components using two group convolution
weight matrices W1, W5 and biases by, b, I"Aesulting in enhanced high-frequency
features Xp;qp, and low-frequency features Xj,,,. Finally, after applying residual
connections and performing inverse FFT, the enhanced feature map X freq 1S
obtained. The above processes can be calculated as follows:

Xfreq = FFT (X)),

Kpeat = GELU (Xpeal Wy — X790Wa + by ) + Xpah,

Rymi? = GELU (Xi79 W — Xpeal Wy + by) + X,

Xrea — QRELU (XrealWI _ ximagyy, o b1) 4 Xreal (1)

low low low low >

Rit = GELU (X[7009Ws — X[ealWi + by) + X700,

low low low low
. _ Yreal vimag _ Yreal Yvimag
Xnigh = Xpigh T Xpign » Xiow = Xjgn' + Xjgy
~ _ ~ ~
Xfreq: FFT (Xfreq + Xhigh + Xlow)

Vision State Space Block Building upon the insights from VMamba [12],
we leverage the VSS block to model the intricate relationships between remote
dependencies. As shown in Fig. 1 (b), the VSS block consists of two parallel
branches. The first branch applies a linear layer to expand the channels, followed
by DWConv, SSM, and LayerNorm. The second branch also uses a linear layer
to expand the channels. Finally, the features from both branches are aggregated
to generate the output feature map.

3 Experiments and Results

3.1 Datasets and Evaluation Metrics

We obtained three types of high-throughput cells through cell culture and multi-
dimensional OTS-IFC: control, autophagy, and apoptosis, with cell counts of
2636, 3983, and 1381, respectively. To train the network to recognize different
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cell death states, we divided the data into training, validation, and testing sets
in a 3:1:1 ratio. We utilize Accuracy (Acc), Precision, Recall, F1, and Kappa
coefficient to evaluate the performance of cell death state recognition [3,22].
Additionally, for cell death pathway prediction, we cultured cells treated with
four different concentrations of cisplatin: 7.5 mM, 15 mM, 30 mM, and 60 mM,
with cell counts of 2730, 2505, 3109, and 2596, respectively. Note that the specific
cell death states at each concentration are not pre-labeled in the experiment.

3.2 Implementation Details

We conduct all experiments on the PyTorch framework with an NVIDIA A6000
GPU. We maintain consistent experimental settings across all methods, includ-
ing a batch size of 64. Training is conducted for 100 epochs, using the Adam
optimizer with an initial learning rate of 0.00008.

3.3 Comparative Analysis

To validate the effectiveness of FViM in distinguishing the cell death states, we
conduct a comparative analysis with seven SOTA methods, including: Inception-
NeXt [23], MedViT [13], TransNeXt [18], RMT [5], VMamba [12], MedMamba
[24], and Swin-UMamba [11]. As shown in Table 1, Swin-UMamba achieves
the highest Precision (98.21%), demonstrating its effectiveness in reducing false
detection. Inspiringly, FViM outperforms the comparative methods across the
other five metrics, highlighting its robust ability to capture key features indica-
tive of cellular heterogeneity among control, autophagy, and apoptosis cells.

Table 1. Comparative results from the cell death state recognition dataset. The best
and second best results are shown in bold and underline, respectively.

Method Acc (%) Precision (%) Recall (%) F1 (%) Kappa (%)
InceptionNeXt [23]| 97.88 97.30 97.20 97.25 96.54
MedViT [13] 97.69 98.14 95.93 97.01 96.20
TransNeXt [18] 96.50 96.42 95.28 95.85 94.30
RMT [5] 96.44 96.70 94.35 95.51 94.15
VMamba [12] 97.82 97.60 96.41 97.00 96.43
MedMamba [24] | 98.31 97.78 97.92 97.85 97.26
Swin-UMamba [11]| 98.19 98.21 96.72 97.46 97.04
FViM 98.56 97.92 98.25 98.09 97.66

3.4 Abaltion Results

As shown in Table 2 and Table 3, we conduct ablation study to validate the
effectiveness of the FViIM from the cell death state recognition dataset. Table 2
reveals that combining intensity and phase cell images allows for the extraction
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Table 2. Effectiveness of multi- Table 3. Effectiveness of FGE module

dimensional cell images. and VSS block in FViM.
Image Dimension MACC %) F1 (%
Intensity Phase Ace (%) F1 (%) FGE VSS (%) (%)
v 96.63 95.73 95.32  94.02
v 97.69 97.14 v 97.82 97.12
v v 98.56 98.09 v v 98.56 98.09

of crucial morphological and thickness information, which enables the effective
discrimination of cell death states. In Table 3, we observe that removing the
FGE module and replacing the VSS block with a simple 3x3 convolution layer
results in suboptimal performance. The integration of these two components is
crucial, as it allows FViM to effectively capture key distinguishing features that
are highly indicative of cellular heterogeneity.

3.5 Performance of Cell Death Pathway Prediction

Accurate prediction of cell death pathways is crucial for understanding cellular
responses to chemotherapy and aiding personalized treatment strategies. Fig. 2
provides a comprehensive analysis of FViM in predicting cell death pathways
across different cisplatin concentrations. By projecting the deep feature maps
of FVIiM into a 2-D space using UMAP [14], we visualize the clustering trends
and dynamic evolution of control, autophagy, and apoptosis cells under varying
cisplatin concentrations, as illustrated in Fig. 2 (a). Notably, as cisplatin concen-
tration increases, cell clusters shift toward the apoptosis cluster, with autophagic
cells predominating at lower concentrations, reflecting a protective mechanism.
However, as cisplatin concentration rises, autophagy transitions to apoptosis,
marking a shift from survival to cell death. In Fig. 2 (b), the quantitative re-
sults further corroborate the findings in the UMAP diagram, showing a gradual
increase in apoptosis with higher cisplatin concentrations. As the concentration
increases, a marked increase in apoptotic cells is observed, with apoptosis cells
reaching as high as 54% at 60 mM cisplatin. These results highlight the critical
role of autophagy in inducing apoptosis under chemotherapy stress. Through
Grad-CAM analysis [17], Fig. 2 (c) demonstrates FViM’s ability to identify bi-
ologically significant morphological patterns: normal cells maintain regular con-
tours, autophagic cells exhibit characteristic size expansion and cytoplasmic ac-
cumulation, while apoptotic cells display typical structural disintegration. As a
post-hoc interpretability tool, it is evident from these attention patterns that
FViM’s predictions are grounded in pathologically relevant features, validating
the model’s capability to predict cell death pathways in response to increasing
cisplatin concentrations.
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Fig. 2. Qualitative and quantitative performance of FViM in cell death pathway pre-
diction at different drug concentrations. (a) UMAP diagram of control, autophagy,
and apoptosis cells clustering trend. (b) Quantitative detection results of control, au-
tophagy, and apoptosis cells. (¢) Grad-CAM results.
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4 Discussion and Conclusion

Lung cancer remains one of the most prevalent and lethal malignancies world-
wide, with chemotherapy being the cornerstone of its treatment. However, the
efficacy of chemotherapeutic agents, such as cisplatin, is often limited by the
complex and heterogeneous responses of cancer cells, including variations in cell
death pathways. Understanding these pathways—autophagy and apoptosis—is
critical for optimizing treatment strategies and improving patient outcomes.

In this study, we propose FViM, a novel method combining multi-dimensional
OTS-IFS for label-free cell death pathway prediction in lung cancer chemother-
apy. The multi-dimensional OTS-IFS provides a robust platform for acquiring
and analyzing multimodal cell images, while FViM leverages the long-range mod-
eling capabilities of Mamba and frequency domain analysis to effectively extract
key heterogeneity features. Experimental results demonstrate that FViM sur-
passes seven SOTA methods in cell death state recognition. Furthermore, both
quantitative and qualitative analyses reveal its capability to predict cell death
pathways at increasing cisplatin concentrations, offering promising clinical im-
plications.
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