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Abstract. Electrocardiogram (ECG) denoising enhances the clarity of
noisy signals while preserving or even improving diagnostic performance.
Most existing single-lead denoising algorithms require a preliminary noise
assessment across all 12 leads, discarding clean leads and denoising only
the noisy leads. In this paper, a novel disentanglement learning denoising
network is proposed for 12-lead wearable ECG that directly processes 12-
lead ECG, denoising noisy leads while preserving clean leads. Specifically,
the proposed network takes both raw ECG and its corresponding simu-
lated noisy ECG as inputs, disentangling them into noise codes and sig-
nal content codes. To ensure consistency between the content codes from
two inputs, a discriminator is introduced. Additionally, considering that
clean leads within the same ECG can provide valuable information for
denoising noisy leads, a lead encoder is designed to extract lead specific
features from the raw ECG. A contrastive loss is then applied between
the features of noisy and clean leads to optimize the model. The results
demonstrate that our method achieves superior denoising performance
across two different lead system test datasets. Furthermore, evaluations
on an ST-segment change multi-label classification task indicate that the
denoised ECG improve diagnostic AUC and AUPRC. Furthermore, our
model can be used into remote wearable ECG diagnostic workflows, pro-
viding preliminary noise reduction to assist cardiologists in subsequent
clinical assessments.
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1 Introduction

Electrocardiogram (ECG) is a cost-effective and non-invasive cardiac examina-
tion. It reflects the health status of the cardiovascular system and serves as an
essential tool for diagnosing cardiovascular diseases. However, ECG is frequently
affected by noises, especially during home self-monitoring due to improper op-
eration or patient movement. Noisy ECG pose challenges for interpretation and
hinders accurate diagnosis by cardiologists. To avoid the inconvenience of re-
peated data collection and to enhance the visual clarity of noisy ECG while
preserving diagnostic performance, an effective denoising algorithm for wearable
12-lead ECG is required.

Previous research has made many attempts to enhance noisy ECG. Classical
methods such as digital filtering remove noise through frequency domain trans-
formations|[10, 1]. However, these methods perform poorly when ECG is severely
noised. With the increasing availability of datasets and computational resources,
machine learning and deep learning have gained popular in ECG denoising|8, 2,
18]. Various generative models have been investigated, employing supervised de-
noising by introducing simulated noise to clean ECG. Notable examples include
generative adversarial networks (GANSs)[20], and autoencoders[4], all of which
have demonstrated promising results in enhancing ECG signal quality[16, 12, 6].

Despite the remarkable performance of deep learning ECG denoising meth-
ods, certain limitations hinder their practical application. Most methods are
designed for single-lead ECGs|[17], but clinical and wearable ECG devices com-
monly employ 12 leads configurations[15, 7, 9]. Notably, noise does not affect all
leads uniformly, some leads may be noisy while others remain clean, as shown
in Fig. 1(a). Consequently, single-lead methods require prior labeling of noisy
leads, increasing the workload for cardiologists|3]. Moreover, it is worth explor-
ing whether the inherent contrastive relationships between clean and noisy leads
within the same ECG can improve denoising performance.

In this study, we propose a contrastive representation disentanglement frame-
work for 12-lead wearable ECG denoising, termed CD-ECGNet. This framework
takes 12-lead ECG as input and removes noise from noised leads while preserving
clean leads. It reduces the workload for cardiologists by avoiding prior identi-
fication of noise leads. We assume a noisy ECG consists of a noise code (e.g.,
baseline wander) and a signal content code (e.g., cardiac information). To achieve
effective denoising, these two codes are disentangled in the latent space, and the
clean ECG is reconstructed using only the signal content while discarding the
noise code. Since paired clean and noisy ECG are unavailable, simulated noise
is introduced into clean ECG leads. Both the original ECG and the simulated
ECG take the same disentanglement process in the latent space. To ensure that
the signal content code remains noise-invariant between the original and sim-
ulated ECG, a domain discriminator is introduced, and adversarial learning is
employed|21].

Moreover, clean leads can provide auxiliary supervision to facilitate the de-
noising of noisy leads during training. To leverage the contrastive relationships
between clean and noisy leads, we also introduce a lead encoder to capture
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inter-lead features. A contrastive loss is incorporated to encourage the model to
learn the differences between noisy and clean leads, further enhancing denoising
performance.

2 Methods

An overview of our proposed CD-ECGNet learning framewor is shown in Fig.
1(a). Let X and Xg denote the original ECG and simulated ECG, respectively.
The X may contain a mixture of clean and noisy leads, or consist entirely of clean
or noisy leads. The Xg is generated by artificially adding noise into clean leads.
X' and Xig represent the denoised version of X and Xg. The final objective of
this study is to learn a mapping from X to X'

The proposed CD-ECGNet consists of three encoders, a decoder, and a dis-
criminator. Encoders F,,.;sc and Fgpcg are designed to disentangle the noise code
and the signal content code. The Ej..q extracts lead-specific features. Decoder
DEgcog reconstructs the clean ECG using the signal content code. Discriminator
Dis ensure the disentangled signal content remains consistent across two inputs.
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(a) Overview of proposed CD-ECGNet (b) Loss functions

Fig. 1. Overview of proposed (a) CD-ECGNet and (b) loss functions for 12-lead ECG
denoising.

2.1 Representation Distanglement and ECG Denoising

A possible approach for 12-lead ECG denoising is to introduce a clean-noisy
lead classifier and only process noise leads. In this study, we aim to leverage
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clean leads to assist in denoising noisy leads during model training. Since repre-
sentation disentanglement learning seeks to model latent space representations
such that they can be disentangled into multiple independent latent factors, we
naturally extend this idea to ECG denoising[14].

The wearable ECG dataset lacks paired ECG. Instead, cardiologists have only
annotated which leads contain noise. Since unsupervised ECG reconstruction
performs poorly, we introduce simulated noise augmentation. During training,
the model processes two types of inputs: X (e.g., in Fig. 1(a), leads I and II are
clean), used to compute contrastive loss; Xg where clean leads are artificially
noised, used to compute supervised loss.

As shown in Fig. 1(a), X is input into Fyeise, Frog and Ejeqd, Xs is input
into E,pise and Frog:

c= Epca(X),cs = Epca(Xs) (1)
n = Enoise(X)7 ns = Enoise(XS) (2>
= Elead(X) (3)

where ¢ and cg represent the signal content codes of the X andXg, n and ng
denote corresponding noise codes. The FEj..,q performs convolutional along the
signal length dimension . The extracted feature F' has 12 channels, corresponding
to the 12 ECG leads.

Given ¢ and cg,we can reconstruct a noise-free ECG:

X' = Dpca(c), Xg = Dpcalcs) (4)

Since simulated noise may differ from wearable noise, we introduce a discrim-
inator to ensure that the Fpcg can extract the same signal content code from
the ECG with real wearable noise X and the ECG with simulated noise Xg. The
Dis enforce similarity between n and ng, helps model learn to separate noise
from cardiac information, making the representations invariant to variations in
noise types.

2.2 Loss Function

The loss function in CD-ECGNet as shown in Fig. 1(b).
1) Supervised loss: the original ECG X¢ contains 12 channel, with clean lead
Xelean and noise X™%¢. The denoised Xg corresponds to the X ¢ and

.
X """Y. The clean lead supervised loss is:

clean "clean
Loup = HX X

(5)

2) Reconstruction loss: this loss ensures that clean leads are not affected by the
denoising. The denoised X corresponds to the X ¢¢®® and X ™°*¥. The clean
lead reconstruction loss is:

1

£rec _ HAX'clean7 X'clean (6)

1
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3) Contrastive Loss: ECG consists of clean and noisy leads, it is clear that the
clean feature F°®” and noisy feature F"°**¥ should be different. It is benefit
from recognizing this difference when optimizing the model. Therefore, we in-
troduce a contrastive loss to measure the similarity between clean and noisy
features.

clean

exp(comsim(L
pleomsiml “F,ﬁly))> @

ﬁcont =1- lOg( K
exp(cossim(

o ? o

Fclean
g

cossim( £ C:an, F n:'sy) represents the average cosine similarity between clean
leads and noisy leads, o is the temperature coefficient in the contrastive loss.

4) Consistent loss: similar to GANs, we use adversarial learning to measure the
distance between ¢ and cg, encourages consistency between ¢ and cg. We treat ¢
and cg as two classes with labels [ and g, and adopt the Dis that discriminates
c from cg and outputs a value between [ and lg. The min-max game between the
generator and the discriminator ensures that the learned features are consistent

across X and X,.

where comsim( ) represents the average cosine similarity for clean leads,

Leons = (Dis(c) — 1) + (Dis(cg) — Lg)? (8)
The overall objective is:

E, D = mi
) %{%1 mDEzisX {Esup + Erec + Econt + )\‘Ccons} (9>

where E and D represent encoders and decoder, A is a hyperparameter that
controls the importance of the consistent loss, in this study, A is 0.5.

2.3 Network Architecture

1) Encoder: The Egcg and Eypis. adopt a multi-scale 1D convolutional network,
incorporating squeeze-and-excitation layers and residual connections|[11]. Given
an input tensor x € R'?*!| where [ represents signal length and 12 denotes the
number of leads, a permutation transformation is first applied to rearrange the
input as x € R*'2, Then 1D convolutional kernels of size 1 in lead-wise feature
extractor Ej.qq progressively reducing the temporal dimension while preserving
the number of channels. This design maintains lead-specific characteristics, pre-
venting noise and clean leads from interfering with each other.

2) Decoder: The Dgc¢ is an adaptation of the 1-D U-Net up-sampling process.
Each upsampling operation contains two convolutional layers with a kernel size
of 3 and a 1D linear interpolation step[22].

3 Dataset

The data in this study contains a private wearable 12-lead ECG dataset and the
publicly PTB-XL clinical 12-lead ECG dataset[19].
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The wearable ECG used for developing our model was collected by the
CardioCloud Medical Technology(Beijing) Company using a CONX CC1612
ECG device in a Mason-Likar system. The devices are widely used for daily
health monitoring, self-checkups, and by rural doctors for assisted diagnosis.
The dataset comprises 6,224 15s ECG with a sampling frequency of 500 Hz.
The experiments follow a five-fold hold-out, with the dataset partitioned into
training, validation, and test sets in an 8:1:1 ratio.

The PTB-XL was collected in hospital settings using the Wilson lead system,
contains 21,837 10s ECG with a sampling frequency of 500 Hz. The dataset used
as an external test set. To ensure consistency in input length, these signals are
zero-padded to 15 seconds.

To simulate noise conditions, we corrupt the ECG recordings using noise pro-
files from the Massachusetts Institute of Technology-Beth Israel Hospital Noise
Stress Test Database (MIT-BIH NST)[13], which contains 3 half-hour real-world
noise recordings. Electrodes were placed on limbs to avoid capturing visible ECG.
We scale the noise amplitude by multiplying it with a random factor between
0.2 and 1.5.

4 Results and Analysis

4.1 Comparison with Existing Methods

In this section, we compared our CD-ECGNet against five representative from
two main categories, two classical digital filter, FIR[10] and IIR|[10]; three deep
learning method, ¢cGANJ20], Deep-Filter[16] and FCN-DAE[4]. To adapt the
single-lead methods for our task, we modified the input and output channels to
accommodate 12-lead ECG. As shown in Table 1, our method achieves improve-
ments across multiple metrics in wearable testset. Table 2 presents the results
on the PTB-XL testset, demonstrating that despite the differences in ECG de-
vices and lead systems (wearable ECG using Mason-Likar system and PTB-XL
using Wilson lead system), our approach outperforms others across all metrics,
thereby highlighting its superior denoising performance and robustness.

Table 1. Wearable ECG testset evaluation results for different methods for random
noise amplitude between 0.2 to 1.5.

Method SSD (au) | PRD (%) | Cos sim(%) SNR RMSE
FIR[10] 380.04£3.83| 90.63+£0.17 | 78.99£0.59 | 4.97£0.07 | 0.37£0.00
ITR[10] 378.9243.58| 90.74£0.29 | 79.104+0.54 | 4.98+0.07 | 0.37£0.00
c¢GAN][20] 37.39+1.62 | 41.114+0.95 | 99.02+0.07 | 18.26£0.13 | 0.22£0.00
Deep-Filter[16]| 36.88+3.10 | 38.96+1.43 | 99.01+0.09 | 17.9940.33 | 0.2240.01
FCNDAE[4] | 67.17+2.77 | 60.08£1.57 | 98.284+0.09 | 14.95£0.12 | 0.26+£0.00
CD-ECGNet [27.0242.77|34.51+1.65(99.25+0.08(18.81+0.39|0.20+0.01
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Table 2. PTB-XL dataset evaluation results for different methods for random noise
amplitude between 0.2 to 1.5.

Method SSD (au) | PRD (%) | Cos sim(%) SNR RMSE
FIR[10] 305.76£5.62 | 90.48+0.08 | 88.36+£0.19 | 4.73+£0.08 | 0.43£0.00
ITR[10] 303.03£7.40| 90.4440.11 | 88.46+£0.25 | 4.77+0.11 | 0.43£0.00
c¢GAN[20] 27.824+1.07 | 38.744+0.83 | 99.10£0.02 | 17.85£0.06 | 0.23£0.00
Deep-Filter[16]| 24.83+2.24 | 36.094+2.04 | 99.16+0.06 | 17.114+0.32 | 0.2340.00
FCNDAE[4] | 50.084+1.89 | 56.68+2.63 | 98.27+0.05 | 14.16+0.26 | 0.27+0.00
CD-ECGNet [23.5241.33|35.61+1.83(99.21+0.03/17.95+0.30(0.22+0.00

4.2 Interpretative Visualization

Some visualized cases are given to analysis the performance of wearable ECG
denoising. From the Fig. 2(a), it can be observed that CD-ECGNet effectively
removes noise from the simulated ECG(blue signal). In Fig. 2(b), it is notable
that the original clean signal (red signal) contains slight wearable noise, the
denoised output (red signal) from our model appears even smoother than the
original clean signal, demonstrates that our model can effectively denoise real-
world wearable ECG signals.

(b)

Fig. 2. Performance of the proposed method on the wearable dataset. The noisy leads
by blue signal, the original clean lead by red signal, the denoised lead by green signal.

4.3 Ablation Study

To evaluate the effectiveness of each module in our method, an ablation study is
conducted using three variants: Baseline, Disentanglement Learning (DL), Dis-
entanglement Learning with a Discriminator (DL+D). Our complete method is
represented as CD-ECGNet, incorporates disentanglement learning and is opti-
mized using both the consistent loss and lead contrastive loss. The results of the



8 Y. Zhang et al.

ablation study are summarized in Table 3. It can be observed that disentangle-
ment leaning significantly enhances denoising compare to the baseline. Further
improvements are observed by the discriminator, highlighting the importance
of enforcing content code consistency. The full model CD-ECGNet achieves the
best overall performance by leveraging lead contrastive loss to enhance feature
learning.

Table 3. Performance of ablation experiments on wearable testset.

Method SSD(au) PRD(%) | Cos sim(%) SNR RMSE
Baseline 51.65+2.17 | 53.67£1.91 | 98.70£0.05 | 16.50£0.20 | 0.24+£0.00
DL 40.88+5.42 | 42.23+2.98 | 98.924+0.12 | 17.56+0.59 | 0.2240.01
DL+D 30.894+2.02 | 36.634+1.02 | 99.1440.05 | 18.25£0.35 | 0.21£0.00
CD-ECGNet|27.0242.77|34.51+1.65(99.25+0.08(18.81+0.39|0.20+0.01

4.4 Impact of Denoising on Diagnosis

To assess CD-ECGNet enhances diagnostic performance, we conduct an imbal-
anced multi-label classification for ST-segment changes (STC)[14]. STC includes
ST-segment elevation (STE) and depression (STD). The dataset consists of 4,000
ECG, including 180 with STE, 180 with STD, 180 with both, and 3,460 normal
samples, positive samples account for only 1:11.

A five-fold cross-validation strategy is employed. In the ‘w/o denoising’ set-
ting, the model is trained and evaluated on normalized ECG without denoising.
In the ‘with denoising’ setting, ECG are first processed using CD-ECGNet be-
fore classification. Both experiments are conducted under identical conditions.
As shown in Table 4. After denoising, AUPRC improves for minority classes,
with STD increasing by 0.449% and STE by 2.837%.

Table 4. AUC and AUPRC performance for STC.

AUC AUPRC
Method STE STD STE STD
w/o denoising | 82.44+1.62 | 82.8913.62 | 55.07+4.54 | 50.28+7.33
with denoising|84.32-2.58|83.75+3.86|55.524-3.89|53.12+4.83

5 Conclusion

We propose a 12-lead ECG denoising framework based on disentanglement learn-
ing, which disentangle ECG into noisy and content code, using clean leads to
assist in denoising noisy leads. Our model is trained on wearable ECG and tested
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on both wearable and hospital datasets, demonstrating its effectiveness. Addi-
tionally, we evaluated diagnostic performance after denoising using the STC
classification task, where our method improved diagnostic AUC and AUPRC.
Our approach can be extended to remote wearable ECG applications, enhancing
visual clarity and diagnostic performance. Since the simulated noise is based on
the Wilson lead system, a domain shift exists between it and wearable ECGJ5].
In the future, we aim to address this domain shift to enhance model’s robustness.
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