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Abstract. Medical image interpretation and report generation are es-
sential for radiologists to identify and communicate observable findings
of diseases. Major efforts in image-to-report generation require heavy
language model training yet still suffer from producing reports with fac-
tual errors. In this study, we present RadAlign, demonstrating that a
concept-based vision-language model can improve both predictive accu-
racy and report factual correctness without extensive language model
training. Our key innovation is aligning visual features with medical di-
agnostic criteria in a shared representation space. Such alignment intro-
duces core knowledge supervision and creates interpretable intermediate
diagnosis results for LLMs to refine report generation. We also propose
a cross-modal retrieval mechanism to provide additional clinical context
of history cases for enhancing report generation accuracy. This unified
approach achieves superior disease classification on MIMIC-CXR (aver-
age AUC: 0.885) and enables accurate report generation (GREEN score:
0.678 vs. SOTA: 0.634). RadAlign also demonstrates exceptional gener-
alization capabilities, outperforming SOTA foundation and specialized
models on the external OpenI dataset (AUC: 0.923 vs. 0.836). Code is
available at https://github.com/difeigu/RadAlign.

Keywords: Vision-Language Model · Visual Concept Learning · Radi-
ology Report Generation.

1 Introduction

Medical image interpretation and report generation play a vital role in the clin-
ical workflow that can directly impact disease characterization and patient care
[14]. For instance, chest radiograph interpretation [17] remains as a critical task,
where clinicians must recognize subtle abnormalities and translate precise dis-
ease classifications into detailed reports. Accomplishing this complex task re-
quires systematic efforts to capture a detailed state of the disease and generate
comprehensive, well-reasoned explanations of these clinical findings [24].

Major research on chest radiographic interpretation falls into classification mod-
els [30,3,2] and image captioning approaches [4,11]. First, classification methods
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Fig. 1: Overview of the RadAlign framework. Our unified VLM predicts
three key components: 1. Diagnostic criteria and associated concepts, formu-
lated by an LLM based on historical reports, facilitate learning of image-concept
alignment; 2. Disease prediction is derived from this alignment, enabling an
explainable classifier; 3. Augmented historical reports are retrieved using
learned visual concept tokens. These three components are combined and serve
as knowledge-guided prompts for the LLM, ensuring a factually accurate report.

build on deep neural networks [9,2,30] and vision transformers [7,18] to show di-
agnostic precision in detecting pneumonia, cardiomegaly, and pulmonary edema.
However, these models operate as black boxes by predicting only disease labels
without explaining the visual semantic features that led to their predictions. This
lack of interpretability limits their utility in real-world clinics. Second, growing
efforts have investigated image captioning approaches [11,5,25,1] for generating
free-text radiology reports. Despite of their advance, these methods often require
extensive language model training yet still suffer from hallucinations - generating
incorrect or unreliable information misaligned with the actual image content or
medical knowledge [23,33].

The alignment between visual content and language context [8] is essential for
developing human-level diagnostic reports. To illustrate, radiologists follow a
structured process where they first assess specific diagnostic criteria and medical
concepts (e.g., heart size, lung opacity, or pulmonary vessels) and then synthesize
these observations with their medical knowledge to form detailed reports [10].
This clinical workflow motivates our development of RadAlign, a multi-modal
framework that unifies the strength of predictive models with the reasoning
capabilities of LLMs. Unlike prior approaches defining visual analysis and report
generation as separate tasks [26], RadAlign purposely mirrors the radiologist’s
workflow on the concept-based image diagnosis. Our contributions are:
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– A unified framework that bridges the gap between classification accuracy
and detailed reporting through the vision-language concept alignment.

– A novel approach to medical report generation that mirrors radiologist work-
flow, combining visual feature recognition with LLM-based reasoning.

– A cross-modal retrieval-augmented generation system that enhances report
reliability by grounding predictions in similar historical cases.

– Superior performance in classification (AUC: 0.885 on MIMIC-CXR, 0.923
on OpenI) and report generation benchmarks (GREEN score: 0.678 vs.
SOTA: 0.634) with improved interpretability for clinical applications.

2 Related Work

Vision-Language Models (VLMs) seek to align visual and textual represen-
tations via contrastive learning and multimodal pre-training. General-purpose
VLMs [22,3,13] trained on natural images often lack the specific medical knowl-
edge required for disease understanding. Therefore, increased domain-specific
adaptations have been explored including BioViL [3], MedCLIP [27] and Med-
KLIP [28]. These methods excel at learning joint representations to enable down-
stream tasks. They often focus on image-and-text matching in a pre-training
framework, without explicitly considering patient information retrieval at in-
ference time. In contrast, our effort emphasizes on learning domain-specific con-
cepts, which serve as interpretable anchors for image analysis and textual report-
ing. This key procedure provides a transparent foundation for case retrieval and
report generation, ensuring that the final report is clinically grounded.

Multimodel Caption Generation aims to integrate textual and visual in-
formation to improve the caption quality. Traditional approaches [4,16,21] em-
ploy neural networks to leverage both visual and textual features for generating
coherent reports. However, these methods often function as black-box models,
prioritizing the performance at the cost of interpretability. With the rise of large
language models (LLMs), approaches like ChatCAD [26] aim to incorporate rea-
soning by combining classification networks, segmentation models, report gener-
ation modules, and LLMs. It is clear that these independent models could intro-
duce significant computational overhead and increased integration complexity.
Inconsistencies can emerge when aligning outputs from different modules, po-
tentially compromising the final report’s quality and reliability.

3 Methodology

3.1 Domain Knowledge Query

Inspired by how radiologists diagnose images, we first extract structured diag-
nostic criteria by mining expert-provided findings to create a foundation for
concept-based diagnosis. Let D = {(x, P, y)} be our training set, where x is an
image, P the ground-truth report findings, and y ∈ Y the disease label among
N classes. We compile all findings P = {P1, P2, . . . , P|D|} and prompt an LLM
to derive a set of K disentangled diagnostic criteria {Ci}Ki=1. For example, for
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chest X-rays, the criteria might include Heart Size, Lung Opacity, Diaphragm
Position, etc. We then query more detailed knowledge per criterion, group-
ing them by disease class as Ci = {C1

i , C
2
i , . . . , C

ni
i }. Each description indicates

how that criterion manifests for each disease (e.g., Heart Size changes for Car-
diomegaly but not for Pneumonia). Lastly, we build a mapping fm : C → Y
to link each concept description to one or more disease classes.This structured
knowledge extraction provides crucial semantic anchors for our model to learn
clinically relevant patterns.

3.2 Visual Concept Fine-grained Alignment

This component aims to discover and recognize specific visual features based on
the structured diagnostic criteria, enabling the model to "see" like a radiologist.
Using a pretrained vision-language model, we encode the textual criteria {ei}Ki=1

via its text encoder T . Each ei ∈ Rni×d anchors the expert-derived concepts in
embedding space. Meanwhile, we introduce K learnable visual concept tokens
z ∈ RK×d in the visual encoder V. Given an image x, we extract features V(x)
and use cross-attention to obtain:

ẑ = cross-attention(z,V(x),V(x)), (1)

where z acts as the query. Each of the K tokens is encouraged to focus on
the visual features pertinent to its corresponding criterion. To align visual and
textual embeddings, we employ a domain-specific contrastive loss:

Li
anchor(ẑi, ei) = − log

exp
(
sim(ẑi, e

positive
i )/τ

)∑ni

j=1 exp
(
sim(ẑi, e

j
i )/τ

) , (2)

where ẑi and ei are matched concept embeddings, τ is a temperature parame-
ter, and sim denotes dot-product similarity. This alignment process teaches the
model to recognize clinically relevant patterns in radiographs, mimicking how
radiologists diagnose with criteria.

3.3 Knowledge-guided Prompting

We propose a novel approach that leverages the diagnostic power of our aligned
concept model without requiring extensive language model training. Our key in-
sight is that the well-aligned concept-based vision-language model already con-
tains sufficient diagnostic information for accurate report generation. Our vision-
language model produces visual concept tokens ẑi aligned with diagnostic criteria
anchors ei. We construct an explainable classifier using the similarity:

ŷ = W (concat(sim(ẑ1, e1), . . . , sim(ẑK , eK)))⊺, (3)

where W represents the significance of each criterion’s contribution toward clas-
sification. The total loss function combines cross-entropy for disease classification
with the average contrastive loss:
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Ltotal = Lce(ŷ, y) +
1
K

K∑
i=1

Li
anchor(ẑi, ei). (4)

To generate the report, we directly prompt the LLM with both the recognized
criteria from our aligned model and the final classification prediction. Since the
vision-language model is aligned in terms of diagnostic criteria concepts, it al-
ready contains the detailed findings necessary for accurate reporting. The LLM’s
role is primarily to reform these findings into a coherent, well-structured report
rather than making diagnostic decisions. This approach uniquely combines the
accuracy of our predictive model with the language capabilities of LLMs while
significantly reducing hallucinations, as the factual diagnostic content is already
ensured by the vision-language alignment.

3.4 Image-based Report Retrieval Augmentation (RAG)

While our aligned concept model provides accurate diagnostic findings, we recog-
nize that general-purpose LLMs are not specifically trained for medical reporting.
They require clinical context to understand appropriate radiology writing styles
and terminology. Our image-based RAG system addresses this by providing rel-
evant clinical examples that help the LLM reason more effectively for medical
reporting. We construct a report database of training images:

Q = {(ẑi, Pi)}|D|
i=1 (5)

Where (ẑi, Pi) is a key-value pair of visual concept tokens and corresponding re-
ports. We precompute and store the visual concept tokens to minimize inference
overhead. For each image x ̸∈ D, we retrieve the most similar TopK cases:

Pretrieve = Q(ẑi, ẑi ∈ TopKẑ∈{ẑ1,ẑ2,...,ẑ|D|}sim(ẑi, ẑx)) (6)

Where ẑx is the predicted concept token of any testing image. This retrieval
mechanism grounds the LLM’s output in validated clinical examples, helping
maintain professional terminology and reporting conventions. By providing sim-
ilar cases with confirmed diagnoses, we enable the LLM to better contextualize
the aligned visual concepts into a clinically appropriate report. The classifica-
tion results, concept findings, and retrieved reports are then incorporated into
a unified prompt for the LLM, leveraging its editing capabilities while ensuring
medical accuracy and relevance.

4 Experiment and Results

4.1 Experimental Setup

Dataset. We use MIMIC-CXR [12] for a comprehensive training and evalu-
ation. The MIMIC-CXR dataset contains 377,100 chest X-ray images and cor-
responding radiology reports including findings, impressions, and patient his-
tory. We use five common classes including Atelectasis (AT), Cardiomegaly
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Table 1: Left: Report generation comparison. Right: RadAlign with different LLMs.
Model LLM GREEN ↑

R2GenCMN - 0.634
ChatCAD 4o-mini 0.633
ChatCAD 4o 0.634

RadAlign† 4o-mini 0.629
RadAlign†† 4o-mini 0.648
RadAlign†† 4o 0.678
† Initialized with ImageNet weights.
†† Initialized with BioViL weights.

RadAlign + LLM GREEN ↑

ChatGPT 3.5-Turbo 0.648
ChatGPT 4o-mini 0.646

ChatGPT 4o 0.678
Claude 3.5-Sonnet 0.658

Llama 3.1 0.695

(CM), Consolidation (CD), Edema (ED) and Pleural Effusion (PE). To high-
light RadAlign’s out-of-domain generalization, we further evaluate on IU X-ray
(OpenI)[6], which is unseen by all comparison methods. IU X-ray contains 7,470
chest X-ray images with corresponding reports from 3,955 patients.

Baselines. We evaluate our model against SOTA baselines for both disease
classification and report generation tasks. For disease classification, we compare
with: zero-shot foundation models, like CLIP [22], BiomedicalCLIP [31], and
BioViL [3]. We also compare with domain-specific models that are trained on the
MIMIC-CXR dataset, including PCAM [30]; ChatCAD [26], a multi-model inte-
gration LLM framework; LABO [29], an explainable VLM with concept bottle-
neck. For report generation, we compare against R2GenCMN [4], a cross-modal
memory network for visual-textual integration, and ChatCAD [26].

Implementation Details. We prompt GPT-4 to query the diagnostic criteria.
For our vision backbone, we conduct experiments using both ImageNet pre-
trained Resnet-50 weights and the BioViL CLIP Resnet-50 weights [3]. During
training, we only optimize the visual encoder, visual concept tokens, and the final
linear layer with AdamW optimizer for 40 epoches, using a decreasing learning
rate of [1e-3, 1e-4], while keeping the text encoder fixed. All experiments are
conducted using PyTorch with Nvidia RTX 8000 GPUs.

4.2 Results

Report Generation Comparison. We evaluate report generation quality us-
ing GREEN Score [19], a metric specifically designed for medical report assess-
ment that leverages LLM-based reasoning to identify clinically significant errors.
Unlike traditional metrics such as BLEU [20], ROUGE [15], and BERTScore [32]
that only measure surface-level text similarity without considering factual cor-
rectness, GREEN focuses on accurately distinguishing between presence and
absence of conditions and offers both quantitative scores and interpretable ex-
planations that align well with expert judgment. For implementation details and
more discussion, we refer readers to the original paper [19].

As shown in Table 1 (left), RadAlign achieves superior performance with a
GREEN score of 0.678 using GPT-4o, substantially outperforming the baseline
methods (0.634). Notably, we observe different scaling behaviors between meth-
ods: ChatCAD shows negligible improvement when upgrading from GPT-4o mini
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Table 2: Classification results for different methods on F1 and AUC

(a) MIMIC-CXR

Model AT CM CD ED PE Average

F1 AUC F1 AUC F1 AUC F1 AUC F1 AUC F1 AUC

CLIP 0.200 0.507 0.200 0.540 0.000 0.497 0.060 0.498 0.200 0.500 0.132 0.508
BiomedCLIP 0.180 0.547 0.113 0.526 0.157 0.584 0.166 0.572 0.365 0.614 0.196 0.569
BioViL 0.388 0.705 0.431 0.715 0.165 0.806 0.329 0.783 0.582 0.769 0.379 0.756
PCAM∗ 0.618 0.838 0.628 0.876 0.432 0.787 0.514 0.868 0.755 0.937 0.589 0.861
ChatCAD 0.311 0.542 0.523 0.650 0.527 0.724 0.641 0.662 0.764 0.838 0.553 0.683
LABO 0.583 0.753 0.607 0.768 0.462 0.747 0.556 0.820 0.714 0.847 0.584 0.787
RadAlign† 0.628 0.841 0.650 0.873 0.490 0.824 0.616 0.916 0.779 0.956 0.633 0.882
RadAlign†† 0.634 0.853 0.653 0.873 0.473 0.824 0.580 0.924 0.820 0.954 0.632 0.885
∗ MIMIC-CXR finetuned. † Initialized with ImageNet weights. †† Initialized with BioViL weights.

(b) IU X-ray (OpenI)

Model AT CM CD ED PE Average

F1 AUC F1 AUC F1 AUC F1 AUC F1 AUC F1 AUC

CLIP 0.272 0.517 0.249 0.559 0.000 0.499 0.046 0.502 0.101 0.500 0.134 0.515
BiomedCLIP 0.100 0.520 0.160 0.542 0.200 0.618 0.118 0.550 0.348 0.610 0.185 0.568
BioViL 0.272 0.517 0.249 0.559 0.000 0.499 0.046 0.502 0.101 0.500 0.134 0.515
PCAM∗ 0.540 0.569 0.715 0.862 0.607 0.978 0.505 0.809 0.786 0.961 0.630 0.836
RadAlign†† 0.695 0.851 0.737 0.913 0.563 0.952 0.618 0.934 0.648 0.963 0.652 0.923

∗ MIMIC-CXR finetuned. †† Initialized with BioViL weights.

to GPT-4o, while RadAlign shows significant performance gains (0.648 to 0.678).
This differential scaling highlights how RadAlign’s unified vision-language align-
ment effectively leverages enhanced LLM reasoning capabilities based on recog-
nized medical concepts, while ChatCAD’s multi-model pipeline lacks alignment,
introducing inconsistencies that limit the benefits of more powerful LLMs.

Classification Accuracy Comparison. Table 2 presents disease classification
results in terms of F1 score and AUC. On MIMIC-CXR, RadAlign achieves
the leading classification performance with an average F1 score of 0.633 and
AUC of 0.885, outperforming both foundation models like BiomedCLIP, BioVil,
and specialized methods like ChatCAD and PCAM. More impressively, when
evaluated on the unseen OpenI dataset, RadAlign maintains strong performance
with an average F1 score of 0.652 and AUC of 0.923, demonstrating excellent
generalization capability and robustness to domain shifts.

Evaluation with different LLMs. We evaluated RadAlign with various large
language models to assess its compatibility and generalizability,as shown in Table
1 (right). All tested LLMs, including ChatGPT (3.5, 4o-mini, 4o), Claude 3.5-
Sonnet, and Llama 3.1 7B, achieved higher GREEN scores (0.646–0.695) than the
previous baseline of 0.634, showing that our visual concept alignment approach
is robust across different LLM architectures. More advanced models generally
performed better (e.g., ChatGPT improved from 0.648 to 0.678).
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Fig. 2: Top: Ablation studies. (a-c) show classification performance of differ-
ent number of concept anchors. (d) illustrates GREEN-score performance when
varying the number of retrieved similar reports K. Bottom: Visualization.
Attention map of concept tokens for different disease classes (AT, CM, CD, ED,
PE), with warmer colors indicating higher attention scores.

Ablation Studies. Our experiments identified optimal parameters for RadAlign:
performance peaked with 14 concept anchors across all metrics (Fig. 2, top a-
c), as additional anchors introduced noise rather than meaningful features. For
report retrieval, K=7 similar reports yielded the highest GREEN-Score (Fig. 2,
top d), balancing sufficient semantic guidance without introducing misleading
information from less relevant cases.

Concept Interpretation. RadAlign enables transparent interpretation of its
decision-making process through visualization of concept token attention weights,
displaying disease-specific localization patterns that align with clinical expertise.
In Fig. 2 bottom, the attention heatmaps highlight anatomically-relevant regions
for each condition. For example, for Atlectasis (AT), the heatmap highlights spe-
cific areas around the edge of the lung fields that are indicative of abnormalities,
while for Cardiomegaly (CM), attention is drawn to distinct location at the
heart region. These visualizations validate that our concept tokens can capture
clinically meaningful features to assess the model’s reasoning process.

5 Discussion and Conclusion

We introduce RadAlign, a novel framework that aligns visual features with med-
ical concepts using a specialized Vision-Language Model. Unlike conventional
methods that rely on extensive language model training or basic LLM prompting,
RadAlign leverages a robust, concept-driven alignment strategy to map image
features to diagnostic criteria. RadAlign achieves superior disease classification
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with an AUC of 0.885 on MIMIC-CXR and 0.923 on OpenI, while generating
high-quality reports with a GREEN score of 0.678, outperforming state-of-the-
art baselines. By integrating retrieval-augmented generation, RadAlign enhances
factual accuracy and interpretability, drawing on similar historical cases to re-
duce hallucination. Notably, RadAlign bypasses extensive language model train-
ing, offering an efficient solution for clinical applications. Its concept-driven de-
sign ensures transparency by mirroring radiologists’ diagnostic workflows.
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