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Abstract. Upper endoscopy is the preferred method for detecting early-
stage gastrointestinal diseases and plays a crucial role in managing gas-
tric cancer. Quality assessment has been a recurring concern in clini-
cal research, particularly regarding the time specialists spend examining
different anatomical sites. While current guidelines emphasize thorough
inspection and documentation to minimize blind spots, adherence re-
mains low due to the lack of second readers. State-of-the-art automatic
approaches audit single-frame or fixed temporal windows, with limited
performance in real applications. This paper introduces the Multi-Scale
Sequence Informative (MSSI) module, a Transformer-based attention
mechanism that audits video sequences across multiple temporal scales.
The proposed approach estimates the time spent exploring different or-
gans and regions of the stomach. The method processes 15 to 196 tokens
(1 to 13 seconds) by a sliding window, building up a mosaic of sampled
frames. Each frame is encoded with a pre-trained endoscopy embedding
which feeds a Vision Transformer to capture short-, mid-, and long-range
dependencies. The approach is evaluated with 233 endoscopic proce-
dures (∼1.6 million frames), demonstrating a close alignment between
estimated procedural times and expert-validated standards. It achieved
92.03% macro precision in organ classification and 89.34% in distinguish-
ing 23 specific views of different stomach sites, a total of 27 classes to au-
dit, showing real potential to be applicable in real clinical scenarios. Our
code is available at https://github.com/Cimalab-unal/EndoAudit.git.

Keywords: Endoscopy Quality · Exam Time · Temporal Analysis.

1 Introduction

Upper endoscopy or esophagogastroduodenoscopy (EGD) is the diagnostic and
screening tool to study upper gastrointestinal (UGI) disorders, particularly in
high-risk populations [1]. However, despite the wide clinical application, EGD is

https://github.com/Cimalab-unal/EndoAudit.git
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limited by cognitive and technical skill requirements [2]. Studies have reported
missed detection rates exceeding 20% in Asia and ranging from 7.2% to 14.0% in
Western countries [3,4,5,6], all of them concluding in the necessity of standard-
izing EGD procedures. As a result, guidelines and experts have agreed about
quality or auditory standards [7]. In particular, the American Society for Gas-
trointestinal Endoscopy (ASGE) and the American College of Gastroenterol-
ogy (ACG) have proposed safety and quality EGD indicators [8]. In 2015, the
European Society of Gastrointestinal Endoscopy (ESGE) introduced the first
evidence-based EGD indicators [9]. Overall, current guidelines recommend a sys-
tematic examination of all gastric regions and a minimum examination time of
7 minutes to optimize lesion detection [10,11]. Non-blind spot EGD has gained
attention, prompting standardized protocols for thorough stomach mapping [12].
However, compliance with these standards is suboptimal by a lack of monitoring
tools [13]. Stomach photodocumentation is the most studied quality indicator in
endoscopy, yet procedure duration is often overlooked. Only 18.2% of endoscopy
reports include EGD duration, whereas 51% report photodocumentation [13], de-
spite longer inspection times being associated with higher lesion detection rates
[9,10]. Hence integrating temporal data improves accuracy and standardization
of EGD quality assessment.

In clinical practice, the need for an appropriate audit positions Artificial In-
telligence (AI) as a promising solution to partially or fully automating EGD
quality assessment. Pioneering studies of quality in EGD procedures analyzed
single-frames, most of them using private datasets to train Convolutional Neural
Networks (CNNs) and classify anatomical regions (larynx, esophagus, stomach,
and duodenum) [14] or assess photodocumentation guided by specific proto-
cols [15,16]. Yuan et al. [17] trained a MobileNetV3-large with 144,277 images
(27 categories) and validated it on 16,031 images, achieving 91.85% of sensitiv-
ity. Other methods combined CNN-based single-frame classifications with sliding
windows to apply hard-voting-based algorithms and improve stability [18]. Kang
et al. [19] used the InceptionResNetV2 model for video analysis, achieving an
F1-score of 61.37%. However, single-frame predictions, although incorporating
temporal filters in real-time applications, are unstable, likely because they ignore
temporal consistency and hardly capture long-range dependencies. To overcome
this limitation, Li et al. [20] combined CNN-based single-frame classifications
with a Long Short-Term Memory (LSTM) network of 5 frames. Lately, sys-
tems like WISENSE [21] and ENDOANGEL [22] used CNNs and reinforcement
learning to detect blind spots while tracking the procedure duration. However,
multi-frame methods have three limitations: (1) LSTM captures minimal tem-
poral information, (2) the memory window is too short to track organ details,
and (3) training relies on private datasets, limiting reproducibility.

Unlike previous works, the main contribution of this study is the automatic
auditing of the time spent by gastroenterologist in the pharynx, esophagus, duo-
denum, stomach, and the 22 stomach sites, as outlined in the Systematic Screen-
ing Protocol for the Stomach. The model produces interpretable outputs in the
form of time-based quality indicators from sequence classification using a long-
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range CNN-Transformer framework, providing practical evidence for endoscopy
quality assessment and procedural auditing.
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Fig. 1. MSSI applies a Multi-Frame Embedding to each frame and generates rich fea-
ture representations for the entire EGD video. The Temporal Module, built upon ViT,
captures embeddings from temporal sequences (xi), with the keyframe positioned at
the center. Each sequence embedding (Si) and its corresponding class token (clsi) are
passed through a multi-layer perceptron (MLP) to classify the organ and stomach site.

2 Method

Multi-Frame Embedding. A Multi-Frame Framework extracts frame-level
embeddings to feed token representations of a Temporal Attention Module. Each
frame is sequentially processed by a ConvNeXt-Tiny CNN, pretrained with 270
endoscopy cases, which encodes the frame as a D-dimensional feature vector
(D = 768), reducing redundancy and preserving salient visual details (see Fig-
ure 1-a). Formally, let X = {xi}Ni=1 denotes the collection of video segments,
where N is the total number of segments. Each segment xi ∈ RF×H×W×3 con-
sists of F RGB frames with H ×W spatial resolution. The extracted frame em-
beddings make an ordered temporal sequence, structured as: Si = fConvNeXt(xi)
∈ RF×D where F represents the number of frames (tokens) in the temporal win-
dow. These Si sequences (mosaics) serve as input to a Transformer module that
learns short- and long-term dependencies, building the analysis upon temporal
attention represented by multiple time scales.

Transformer Backbone. The Vision Transformer (ViT) [23] is the core of
the video analysis. It is initialized with ImageNet-pretrained weights and fine-
tuned with endoscopy videos. The transformer is adapted at modifying the usual
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token representation, i.e., rather than applying ViT patch tokenization, a slid-
ing temporal window constructs a mosaic Si of sampled frames. Each token is
derived from CNN-extracted multi-frame embeddings, facilitating the ViT con-
nects high-level feature representations instead of raw pixel patches. This choice
simplifies temporal modeling and improves recognition of endoscopic patterns.

Temporal Attention Module. The ViT processes the sequences Si , applying
self-attention to model spatio-temporal dependencies as follows:

S
′

i = fViT(fConvNeXt(xi)) ∈ RF×D (1)

where F represents the number of frames (15-196 tokens) in the temporal win-
dow (see Figure 1-b), D is the embedding dimension. ViT employs Multi-Head
Self-Attention (MSA) to capture short- and long-range dependencies, computing
attention weights as [24]:

Attention(Q,K, V ) = softmax
(
QK⊤
√
dk

)
V (2)

where Q,K, V are projections of S
′

i . MSA enables parallel attention across mul-
tiple heads, refining temporal representations for improved sequence modeling
and prediction.

2.1 Report Quality Indicators

Automated assessment may ensure endoscopists’ compliance with clinical qual-
ity standards. This study extracts key EGD quality indicators using two mod-
els: UGI organ detection and stomach site identification, both trained with the
Multi-Frame + ViT methodology (see Figure 1-a,b). Each model is optimized
for its specific classification task. By integrating patient temporal metrics with
classification results, this approach provides a standardized evaluation of the
procedural performance, measuring organ-specific and stomach sites exploration
times, achieving thereby actual EGD monitoring and auditing (see Figure 1-c).

3 Experiments and Results

3.1 Experimental Setup

Datasets. The framework was evaluated with the publicly available GastroHUN
UGI video endoscopy dataset [25], focusing on 237 MP4 videos from 233 patients.
All videos were normalized to 15 FPS using FFmpeg. To provide procedural
time annotations, three expert gastroenterologists manually labeled Pharynx,
Esophagus, Stomach, and Duodenum, with annotations publicly available under
a CC-BY open license. Assessment of the time spent in 23 stomach sites was done
using the labels provided by the database. This research follows the original split
(165 training, 33 validation, 35 test patients). As this study uses open-access
human subject data, ethical approval was not required.
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Implementation Details. The transformer encoder is initialized with a ViT-
Base backbone, modified to process variable-length token sequences (15 to 196
frames). Each token is represented by a 768-dimensional feature vector, extracted
from a pretrained ConvNeXt-Tiny CNN. The final MLP classification head is
composed of 4 output neurons for organ classification and 23 for stomach site
detection. The training follows a three-phase strategy. During warm-up, only
the classification layers are trained with 5 epochs at a constant learning rate
of 0.001 to stabilize predictions. In the unfreezing phase, the last four layers
are trained with a scheduled learning rate adjustment, enabling deeper refine-
ment. In fine-tuning, all layers are unfrozen and trained during 15 epochs, with
early stopping if no validation F1-macro score improvement is observed after five
consecutive epochs. The model is implemented in PyTorch Lightning, using pre-
trained ImageNet weights [26] for the ViT and learned stomach weights [27] for
the initial tokens embeddings, trained with Adam optimization and a weighted
cross-entropy loss function to address class imbalance. The learning rate is ad-
justed every 5 epochs with γ = 0.1. Training is conducted on dual NVIDIA RTX
4500 GPUs with a batch size of 128. The Temporal Transformer encoder, com-
prising ∼85.5 million parameters, is designed for offline processing, analyzing
temporal sequences to model procedural transitions and duration variations.

Ablation Study. An ablation study was conducted to assess the impact of key
components. For organ classification, the role of temporal modeling was exam-
ined by removing it and evaluate its contribution in different temporal windows
(Table 1). For stomach sites classification, the study analyzed the effect of pre-
trained weights in the Transformer encoder when testing long-term sequences
(Table 2).

3.2 Model Validation

Organ. Table 1 presents the overall performance, divided into single-frame and
multi-frame analyses. Single-frame spatial embeddings were tested by comparing
different feature extraction methods, including ViT’s patch-based linear projec-
tion (16×16×3), ConvNeXt-Tiny pretrained on ImageNet [26], and EGD data
[27]. The best performance was achieved using pretrained stomach weights, where
a MLP classifier reached a macro precision of 64.55%. The multi-frame analy-
sis explored temporal modeling, comparing two architectures: one model used a
single attention layer without pretrained weights, while the ViT-Base model was
trained with and without ImageNet pretrained weights. In both cases, the initial
token embeddings were derived from the best-performing single-frame embed-
ding method. The best multi-frame performance was achieved with 135 tokens
(9.0 seconds) using a ViT-Base pretrained, reaching a macro precision of 92.03%.
Figure 2 illustrates the qualitative and quantitative performance for a particular
patient, demonstrating strong temporal correlation and consistent predictions
closely aligned with expert annotations.
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Table 1. Performance comparison of single-frame and multi-frame approaches to clas-
sify the organ using deep learning architectures. The models were trained with 165
cases (∼1,182M samples), validated with 33 cases (∼234K samples), and tested with
35 cases (∼242K samples). Metrics include macro precision (Prec.), recall (Rec.), F1-
score, and Matthews correlation coefficient (MCC). Bold: The best test performance.

Embedding Variations Across Spatial Features
Linear Projection ConvNeXt (ImageNet) ConvNeXt (Endoscopy)

time Prec. Rec. F1 MCC Prec. Rec. F1 MCC Prec. Rec. F1 MCC
1 frame 49.74 72.21 54.48 48.86 62.78 85.15 70.37 68.13 64.55 87.06 71.98 70.38

Initial Token Embeddings (Endoscopy [27]) for the Temporal Module
Attention (Random W.) ViT (Random Weights) ViT (ImageNet)

time Prec. Rec. F1 MCC Prec. Rec. F1 MCC Prec. Rec. F1 MCC
1.0 sec 74.57 85.85 79.02 76.63 70.60 86.10 76.85 74.64 82.24 88.10 84.96 83.08
3.0 sec 82.90 88.90 85.54 84.02 78.54 89.47 83.19 80.80 89.74 89.08 89.14 87.85
5.0 sec 83.94 88.39 85.91 84.29 80.47 89.86 84.53 82.56 91.03 89.91 90.29 89.62
9.0 sec 85.80 86.17 85.16 84.26 77.56 87.52 80.98 78.96 92.03 89.89 90.42 89.94
13.1sec 86.56 84.75 84.54 83.95 77.31 90.33 82.72 80.11 89.87 88.53 88.64 88.19

Stomach sites. The stomach site classification models were trained with 159
cases (3,401 samples), validated with 32 cases (654 samples), and tested with
32 cases (674 samples). Table 2 presents a comparison of several multi-frame
temporal models using a ViT-Base backbone pretrained on organ classification.
The proposed model achieves the highest performance with a 9.0-second input
sequence, reaching a macro precision of 89.34±0.30, recall of 88.50±0.34, and
F1-score of 87.96±0.33. To evaluate statistical significance, we replicated the
evaluation procedure from [27], applying their proposed bootstrapping approach.
We computed 95% confidence intervals (α = 0.05) for each metric using 100
resamples, confirming the statistical significance of the observed improvements.
Using the same dataset and splits, our model surpasses the best results from [27]
(Transformer: macro precision of 86.98±0.42, recall of 87.01±0.41, and F1-score
of 86.30±0.42; GRU: macro precision of 86.74±0.38, recall of 86.09±0.39, and
F1-score of 85.47±0.39), highlighting the effectiveness of temporal information
in the classification of stomach regions.

Table 2. Performance comparison of multi-frame approaches for stomach site classifi-
cation using a pretrained ViT-Base architecture from the organ classification task.

ViT (Organ 3.0 sec.) ViT (Organ 9.0 sec.) ViT (Organ 13.1 sec.)
time Prec. Recall F1 MCC Prec. Recall F1 MCC Prec. Recall F1 MCC
1.0 sec 83.38 82.66 81.62 82.45 84.20 83.43 82.71 83.46 83.21 81.87 80.97 82.36
3.0 sec 83.87 83.64 82.38 83.22 85.08 84.01 83.02 83.94 86.14 85.21 84.56 85.26
5.0 sec 86.02 86.04 84.96 86.04 87.48 87.18 86.26 87.44 85.61 84.64 83.65 84.69
7.0 sec 87.66 87.30 86.45 87.38 84.90 84.91 83.39 84.71 88.37 87.82 87.03 87.79
9.0 sec 89.34 88.50 87.96 87.90 86.83 86.96 85.61 86.73 86.86 86.81 85.20 86.73
10 sec 87.81 86.83 86.43 87.21 87.82 87.29 86.68 87.27 88.51 88.22 87.53 87.99
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3.3 Quality Indicators

Table 3 presents the mean and standard deviation of the exploration times of
complete procedures, namely Pharynx, Esophagus, Stomach, and Duodenum.
The average procedure duration is 9:22±4:17, complying with the recommended
minimum of 7 minutes of a thorough examination [9,10]. Regarding the second
quality indicator, stomach site inspection duration across 22 stomach sites [12].
Certain regions, such as the Lesser Curvature in the Antrum and the Greater
Curvature in the Antrum, Lower Body, and Middle-upper Body (L1, G1, G2,
and G3), require larger than 24 seconds for inspection, corresponding to biopsy
extraction sites in the Sydney protocol. Interestingly, posterior walls in Lower
Body and Middle-upper Body (P2 and P3), widely acknowledged as regions
with high-risk of missing lesions, show an inspection time of barely 13 seconds,
a major concern if one considers a higher time should be devoted to these areas
after clinic protocols [5]. Overall, current stomach examination standards specify
which sites to visit but do not mandate a minimum exploration time for each site.
However, multiple studies have shown that longer inspection durations improve
gastric lesion detection [10].

Table 3. Quality indicators of complete procedures. L: lesser curvature, A: anterior
wall, G: greater curvature, P: posterior wall, and SSS: systematic screening protocol
for the stomach.

Indicator 1: Organ-Specific Exploration Time (Protocol: [9])
Patients Procedure Pharynx Esophagus Stomach Duodenum

15 9:22±4:17 0:13±0:17 0:54±0:38 7:17±2:54 0:56±1:19
Indicator 2: Stomach Sites Duration (Protocol SSS: [12])

Region Site Time Region Site Time

Antrum
Antegrade

A1 0:21±0:10
Lower Body
Antegrade

A2 0:11±0:06
L1 0:29±0:27 L2 0:11±0:06
P1 0:19±0:13 P2 0:15±0:12
G1 0:36±0:19 G2 0:34±0:36

Middle
Body

Antegrade

A3 0:08±0:06
Fundus
Cardia

Retroflex

A4 0:05±0:04
L3 0:07±0:06 L4 0:06±0:04
P3 0:11±0:08 P4 0:06±0:05
G3 0:24±0:17 G4 0:09±0:07

Middle
Body

Retroflex

A5 0:05±0:05
Incisura
Retroflex

A6 0:11±0:09
L5 0:10±0:08 L6 0:11±0:11
P5 0:05±0:03 P6 0:10±0:09

Figure 2 presents the quality report of a test patient (# 124), summarizing
both organ-specific exploration time and stomach site inspection duration. The
predicted organ sequence (using a pretrained ViT with a 9.0-second temporal
window) is compared against the ground truth. Similarly, stomach site predic-
tions (using a 9.0-second temporal window) are visualized. The total procedure
duration (17:01 min) largely exceeds the recommended minimum of 7 minutes.
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However, while all 22 stomach sites were inspected, some regions (A2, L3, P3, A4,
P4, G4, and P5) were examined in less than 10 seconds (warning icons), support-
ing the need for automated quality auditing. This also highlights the importance
of further discussion and validation of minimum exploration times, which should
be standardized in clinical auditing protocols. Additionally, Figure 2 in frame 2
illustrates a challenging sample where the method makes a correct prediction,
despite the frame being non-informative due to motion blur and low visibility in
the anatomical transition between the pharynx and esophagus (frames 1–3). A
longer temporal window provides both local and global context to stabilize pre-
dictions. This mechanism resembles how physicians use temporal continuity to
interpret ambiguous or low-quality scenes. Regarding stomach site classification,
the model accurately predicted all frames between 5 and 9 in accordance with
the labels provided in the dataset. In regions such as the antrum, Grad-CAM
visualizations as shown in Figure 2 suggest that the model consistently attends
to distinctive anatomical landmarks, these landmarks, such as the pylorus, gas-
tric folds, or the incisura, appear to generate high-gradient responses, likely due
to their structural prominence (e.g., orifices, folds, or protrusions). This focus is
supported by the alignment of predictions in frames 5 (L1), 6 (L2), 7 (G3), 8
(A6), and 9 (G4). These frames serve as crucial reference points, enabling the
model to differentiate between neighboring stomach sites.

time 17:01 min

Ground-Truth: Organ

Predicted Organ: Pretrained ViT temporal window 9.0 sec

Predicted Stomach Site: Pretrained ViT temporal window 9.0 sec

Time exploration
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Stomach sites: 22 / 22 sites    -     ≤ 10sec17:01 >7 min (recommend)✔
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Fig. 2. Quality Indicator Report. The top panel displays organ and stomach site clas-
sification timelines. The bottom panel shows inspection times.

4 Conclusions

This study evaluates two classification tasks to construct a detailed and objec-
tive audit of procedural quality, incorporating time as a key assessment factor.
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The method is tested on a public dataset at both metric and patient levels.
Transformer-based multi-frame detection enables quantitative monitoring of or-
gan exploration time and stomach sites inspection for endoscopic quality assess-
ment. However, since this study was conducted as a controlled offline experiment
using a limited dataset from single-brand Olympus endoscopes, its generalizabil-
ity may be affected. Adapting the algorithm to other endoscope systems will
require transfer learning or fine-tuning. Future work will focus on clinical val-
idation, refining spatiotemporal representations, exploring interpretability and
explainability, and enabling real-time evaluation.
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