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Abstract. Fetal motion is a critical indicator of neurological develop-
ment and intrauterine health, yet its quantification remains challenging,
particularly at earlier gestational ages (GA). Current methods track fe-
tal motion by predicting the location of annotated landmarks on 3D
echo planar imaging (EPI) time-series, primarily in third-trimester fe-
tuses. The predicted landmarks enable simplification of the fetal body
for downstream analysis. While these methods perform well within their
training age distribution, they consistently fail to generalize to early GAs
due to significant anatomical changes in both mother and fetus across
gestation, as well as the difficulty of obtaining annotated early GA EPI
data. In this work, we develop a cross-population data augmentation
framework that enables pose estimation models to robustly generalize to
younger GA clinical cohorts using only annotated images from older GA
cohorts. Specifically, we introduce a fetal-specific augmentation strategy
that simulates the distinct intrauterine environment and fetal positioning
of early GAs. Our experiments find that cross-population augmentation
yields reduced variability and significant improvements across both older
GA and challenging early GA cases. By enabling more reliable pose es-
timation across gestation, our work potentially facilitates early clinical
detection and intervention in challenging 4D fetal imaging settings. Code
is available at https://github.com/sebodiaz/cross-population-pose.

Keywords: fetal · neurodevelopment · augmentation

1 Introduction

Fetal motion is a critical biomarker for neurological development, with dimin-
ished movement patterns linked to neurodevelopmental disorders [13] and in-
trauterine complications such as hypoxia, infection, and growth restriction [2].
Accurate quantification of these movements is essential for effective monitor-
ing and timely clinical interventions. Moreover, distinguishing patterns in fetal

https://github.com/sebodiaz/cross-population-pose
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Fig. 1. A comparison of 3D MRI of fetuses at different gestational ages
(GA). Annotations mark anatomical keypoints. (Left) A 32-week GA fetus scanned
at 3mm isotropic resolution, similar to subjects used for training [22]. (Right) A 20-
week GA fetus scanned at 2mm isotropic resolution. Pose estimation networks trained
on higher GA fetuses (Left) do not generalize well to younger GA fetuses (Right).

motion—such as frequency, rhythm, or complexity—may help differentiate be-
tween healthy and at-risk populations, offering deeper insight into developmental
trajectories. Traditionally, fetal motion has been assessed through subjective ma-
ternal perception, with quantitative automated fetal tracking research still in its
infancy.

Recent methods have used ultrasound for movement quantification by track-
ing anatomical landmarks [5], but its associated low tissue contrast makes these
landmarks difficult to detect. Fetal Magnetic Resonance Imaging (MRI) is a
promising alternative as it enables rapid acquisitions with large field-of-view
(FOV) and sufficient contrast to reliably identify anatomical landmarks and en-
able motion studies.

Recent research has demonstrated the potential of convolutional neural net-
works (CNNs) for fetal pose estimation and motion analysis [20,22]. Inspired
by human pose estimation [19,27], these models predict Gaussian-distributed
heatmaps centered on annotated keypoints. The methods achieve impressive per-
formance on third-trimester populations (27-37 weeks GA), but unfortunately
this cohort is not fully representative of clinical practice, where scans cover a
broader GA range and may have anisotropic resolution (Fig. 1). Pose estimation
in younger fetuses (18-22 weeks GA) presents further challenges. Compared to
third-trimester fetuses, they exhibit less defined joint articulation [4], have four
times less mass [11], and display greater intrauterine mobility, leading to a wider
range of poses and frame-to-frame motion. These factors complicate annotation,
even for experts, make labeling more time-consuming than their older counter-
parts, where anatomical features are more distinct and movement is reduced.

Such domain gaps [14] are common in medical imaging due to variations in
acquisition protocols, scanner hardware, image resolution, and sites [16,21,25].
Data augmentation, attempts to bridge this gap by perturbing the source domain
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to encourage robust feature learning [23,26]. However, even with the extensive
use of existing augmentations, these models fail to generalize to early GAs as they
do not fully account for the drastic morphological differences across gestation.

Clinical fetal MRI presents a severe case of domain shift. Fetal growth in-
troduces a fundamental mismatch – smaller, younger fetuses differ significantly
in size, musculoskeletal development, and movement patterns. Without explic-
itly addressing this discrepancy, models trained on readily available older GA
data struggle to generalize to clinical cases at earlier GAs, where accurate pose
estimation is most needed.

To address the scarcity of diverse training data for fetal pose estimation, we
developed a novel fetal-specific augmentation strategy that captures the unique
spatial arrangement of the uterus earlier in development. By leveraging an an-
notated dataset with segmented regions for the fetus and uterus, we randomly
scale and warp fetal bodies and inpaint them onto uteruses from different sub-
jects. This process simulates the wide variation of spatial configurations seen at
younger gestational ages (GAs). Importantly, drawing inspiration from methods
like SynthMorph [8] and SynthSeg [3], our approach acknowledges that gen-
erating realistic data isn’t always necessary to achieve significant performance
improvements. Through training with our proposed augmentation, we observe
substantial gains in fetal pose estimation performance and robustness across all
anatomical regions and gestational ages, particularly in clinical cohorts where
younger GAs are more common.

2 Methods

2.1 Fetal motion estimation by supervised keypoint detection

Problem formulation: An overview of our method is seen in Fig 2A. Given
an EPI time-series S ∈ RH×W×D×T , where T is the number of volumes in the
sequence, we define a single 3D volume Vt ∈ RH×W×D as a sample at time t
from S. The goal of fetal pose estimation is to localize anatomical landmarks by
estimating a set of keypoints k1, k2, . . . , k15 where each keypoint ki corresponds
to an anatomical landmark in the fetus represented by its 3D voxel coordinates
ki = (xi, yi, zi) ∈ R3 within the volume Vt. Instead of directly predicting key-
point coordinates, we represent them with heatmaps Hi ∈ RH×W×D, where
each voxel (x, y, z) encodes the likelihood of the keypoint location. Specifically,
we adopt a probabilistic approach, where the ground truth heatmap for keypoint
ki is modeled as a 3D isotropic Gaussian with standard deviation σ centered on
(xi, yi, zi).

During training, we optimize our network to predict a set of heatmaps Ĥ =
{Ĥ1, Ĥ2, . . . , Ĥ15} from an input volume V where Ĥi approximates Hi. The
training objective is to minimize the Mean Squared Error (MSE) between the
predicted and the ground truth heatmaps. At inference time, the keypoint coor-
dinates, k̂i = (x̂i, ŷi, ẑi) are extracted from each predicted heatmap Ĥi by first
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Fig. 2. Overview of the proposed method. (A) A network is trained to output Gaussian
heatmaps, from which keypoints are extracted by taking the center-of-mass around
the heatmap’s argmax. (B) Proposed fetal inpainting augmentation. (C) Views of a
training volume augmented with the proposed synthetic amniotic fluid and inpainting
transform. Top and bottom rows are the raw EPI volumes and associated fetal body
embedded into a uterus, respectively. Gamma correction was applied for visualization.

taking the highest activation:

u∗ = (x∗
i , y

∗
i , z

∗
i ) = arg max

(x,y,z)
Ĥi(x, y, z),

followed by a weighted local refinement around the neighborhood, N = {u∗+v :
v ∈ {−1, 0, 1}3}, with a small constant, ϵ = 10−10:

k̂i =

∑
u∈N u · Ĥi(u)

ϵ+
∑

u∈N Ĥi(u)
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2.2 Fetal-specific augmentations

MRI-specific augmentations Conventional data augmentation methods –
such as simple rotations, scalings, flips, or intensity adjustments – benefit gen-
eralization by increasing the diversity of training examples [9]. Although these
were employed in prior work [22,24,25], they fail to capture the nature of clinical
data. Building off the augmentations included by the prior methods, we first in-
corporate a range of transformations to further enhance model robustness. These
include additive noise, anisotropy, bias fields, gamma, and spikes typically en-
countered in MRI acquisitions. In our work, we extend these transformations by
increasing their severity over commonly used settings [3,17].

Fetal inpainting To capture the fact that early GA fetuses are smaller, in
highly variable poses, and exhibit a substantially higher amniotic fluid-to-body
ratio (Fig. 1), we propose a novel augmentation. Specifically, we extract segmen-
tation masks for the fetal body B and the surrounding amniotic fluid A, where
the uterus is defined as U = B ∪ A and I is original image. We then generate
a semi-realistic amniotic fluid intensity distribution in the absence of the fetal
body. We achieve this by removing the body and synthesizing the fluid inten-
sities in the vacated space as: Is(x) = Ã + ϵ(x), x ∈ B, where Ã is the median
of the amniotic fluid intensity and ϵ(x) ∼ N (0, σ2

ϵ ) represents additive noise. To
ensure smooth transitions between the synthesized fluid and the original fluid,
we apply a Gaussian kernel G(x;σu) over U :

I
′
(x) = [1x/∈BI(x) + 1x∈BIs(x)] ∗ G(x;σu), x ∈ U,

and scale I
′

by a factor γ ∼ p(γ) resulting in IU . We add the newly created
image pair (U, IU ) and body pair (B, IB) to the training collection (Fig 2B). To
generate the augmentation, a fetal body B with its intensity image IB and uterus
image IU with its mask U are randomly sampled from the training collection.
We scale B and by a factor α ∼ p(α) and apply a random rigid transformation
T ∼ p(T ) to obtain a transformed body IB(T (αB)) that satisfies T (αB) ⊂ U .
The augmented sample consists of a fetal body IB(T (αB)) placed in a randomly
sampled synthetic volume IU , which is then added to the training dataset.

2.3 Implementation details

We perform all augmentations online which increases the variability of the train-
ing data and improves robustness of the network. We use TorchIO [17] func-
tions for the conventional augmentation implementations. These augmentations
include random noise, random K-space spike artifacts, random bias field cor-
ruptions, random rotations, and random gamma adjustments. In the event of a
scaling augmentation, we multiply the σ of the ground truth heatmap by the cho-
sen factor to discourage overlapping heatmaps as the subject becomes smaller.
We further randomly sample anisotropic image resolution transformations with
downsampling factors between 1.5 and 2. Augmentations are not applied to the
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Fig. 3. PCK (threshold = 10 mm) statistics. Left and right keypoints are binned
together. Median values are reported above each column. Our method demonstrates
improvement in the research cohort (left) and significantly improves estimation in the
clinical cohort (right).

fetal inpainted volumes. For fetal inpainting subjects, we use an in-house seg-
mentation network, trained on ground truth segmentation masks, to obtain body
and amniotic fluid masks.

For keypoint detection, we use a lightweight 3D UNet [6,18] variation which
has demonstrated superior performance in per-voxel tasks compared to larger
models [7]. Our UNet uses ReLU activations, with 4 pooling operations, an initial
embedding dimension of 16, and a channel multiplier of 4, with two convolutional
blocks per level. We train our UNet for 1,000 epochs with a batch size of 16,
crop size of 64, using Adam optimizer [10] with a linear decay scheduler and an
initial learning rate of 0.0002.

3 Experiments and results

3.1 Data

Our study uses two distinct manually labeled datasets. The research dataset
was acquired with a single-shot gradient-echo (GRE) EPI acquisitions, 3mm
isotropic, TR=2.5-4s, TE=32–38ms, FA=90°. This dataset was collected as part
of a study that included predominately higher GAs (27-37 weeks; avg. = 31.74).
It includes 19,816 volumes from 77 acquisitions and 53 unique patients. The
clinical dataset is acquired with the same GRE EPI mentioned above with
TR=2.2-5s, TE=37ms, and FA=90°. In-plane resolution ranged from 1.8-2mm
and slice thickness ranged from 2-3mm. It includes 989 volumes from 37 acqui-
sitions and 28 subjects with an average GA of 21.75 weeks. Thirty of the ac-
quisitions had isotropic 2mm resolution. This data was collected during routine
clinical acquisitions, making it representative of cases encountered in everyday
practice.
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Fig. 4. (Top Left) PCK vs. Threshold. Our method versus the baseline’s perfor-
mance on the clinical dataset across threshold values binned into three groups. Group
1 (○): bladder, eyes, shoulders, and hips. Group 2 (△): elbows and knees. Group 3
(□): ankles and wrists. (Top Right) PCK vs. GA. PCK statistics as a function of
GA. Median values are reported above each box. (Bottom) Qualitative predictions.
Far right time-series animation is shown in the supplementary.

3.2 Experimental setup

Training: Our networks are exclusively trained on the research dataset, divid-
ing (without subject overlap) the 77 times-series into 50 (N=11,618 scans), 13
(N=5,186), and 14 (N=3,462) for training, validation and testing, respectively.
15% of the total training volumes are fetal inpainting volumes, when applicable.
For training, we sampled 8,000 volumes from the training pool.

Baseline: We adapt the original method proposed for volumetric fetal key-
point detection [22] by converting the open-source TensorFlow 1.x [1] code
(https://github.com/daviddmc/fetal-pose) into PyTorch [15]. This method
has demonstrated high performance in research-grade acquisitions [22] and influ-
enced observation motion analysis research [20], making it the most relevant and
meaningful baseline for comparison. We maintain the same pre-processing, aug-
mentation, architecture, and training parameters, training for 400 epochs using
a batch size of 8, a crop size of 64, the AdamW optimizer [12] (weight decay =
0.0001), a cosine warmup scheduler, an initial learning rate of 0.001. Data aug-
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Method Bladder Eyes Shoulders Hips Elbows Knees Wrists Ankles

Research data

Ours 98 ± 3 97 ± 6 99 ± 2 96 ± 9 95 ± 9 98 ± 3 91 ± 10 86 ± 16
Ours−FI 98 ± 2 91 ± 23 95 ± 13 93 ± 13 89 ± 23 92 ± 19 83 ± 19 82 ± 21
Ours−FI−Aniso. 99 ± 2 88 ± 22 93 ± 19 90 ± 19 90 ± 21 93 ± 19 81 ± 25 85 ± 14
Ours−FI−Int. 99 ± 2 80 ± 32 91 ± 24 87 ± 26 85 ± 29 92 ± 18 80 ± 26 78 ± 21
Ours−FI−Noise 97 ± 6 87 ± 27 92 ± 24 94 ± 10 86 ± 27 90 ± 21 83 ± 26 79 ± 24
Ours−FI−Spike 99 ± 3 83 ± 30 92 ± 25 93 ± 12 87 ± 26 91 ± 21 85 ± 25 81 ± 19
Ours−FI−Scale 98 ± 3 87 ± 25 89 ± 27 86 ± 26 84 ± 27 88 ± 26 77 ± 27 79 ± 25

Clinical data

Ours 88 ± 25 86 ± 29 90 ± 27 84 ± 32 87 ± 27 77 ± 29 69 ± 29 61 ± 33
Ours−FI 84 ± 28 84 ± 28 87 ± 26 81 ± 31 82 ± 27 74 ± 35 66 ± 32 57 ± 34
Ours−FI−Aniso. 77 ± 35 78 ± 32 80 ± 31 64 ± 38 68 ± 33 50 ± 36 53 ± 29 43 ± 32
Ours−FI−Int. 71 ± 38 54 ± 39 71 ± 35 54 ± 38 71 ± 30 55 ± 37 50 ± 34 35 ± 30
Ours−FI−Noise 76 ± 36 85 ± 31 86 ± 30 69 ± 38 81 ± 30 70 ± 36 68 ± 28 49 ± 37
Ours−FI−Spike 84 ± 30 76 ± 34 83 ± 31 73 ± 35 78 ± 32 62 ± 35 59 ± 35 39 ± 32
Ours−FI−Scale 72 ± 38 77 ± 32 83 ± 29 66 ± 35 72 ± 33 59 ± 38 62 ± 32 42 ± 35

Table 1. Ablation: PCK (Mean ± standard deviation, threshold = 10mm) per ac-
quisition on both datasets. Bolded numbers are highest performance in each dataset.
"FI" denotes Fetal Inpainting. "Int." is short for "intensity" and refers to gamma and
bias field transforms. "Aniso." denotes anisotropy.

mentation settings were replicated from [22] and included intensity, rotations,
and scaling transformations.

3.3 Results

We evaluate keypoint localization using percentage of correct keypoints (PCK),
which is defined as a frequency the predicted keypoint falls within a predefined
threshold distance from the ground truth. Figure 3 reports PCK statistics across
different acquisitions in the research (n=14) and clinical (n=37) datasets. Our
method consistently outperforms the baseline, achieving higher median PCK
scores with notably lower variability across acquisitions, highlighting its robust-
ness. In particular, keypoints corresponding to the wrists and ankles – areas in-
dicative of significant gestational motion – exhibit median performance increases
of 46% and 57%, respectively, in the clinical cohort.

We further stratified the keypoints into three groups based on detection dif-
ficulty: Group 1 (eyes, shoulders, hips, bladder), Group 2 (elbows, knees), and
Group 3 (ankles, wrists). As illustrated in Figure 4, our method delivers substan-
tial and consistent gains across all groups. The most dramatic improvements are
observed in Group 3, which comprises the smallest and most challenging features.

To investigate the influence of GA on detection accuracy, we merged the
datasets and performed a PCK analysis within discrete GA bins (Fig. 4). As
expected, performance saturates for both methods on older subjects, while our
method demonstrates a significant advantage on younger populations. Further-
more, the narrower spread of errors across subjects underscores the robustness
and consistency of our approach.
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Ablations: To understand the effect of inpainting augmentation in conjunction
with other standard transformations, we conduct ablations on each augmenta-
tion while maintaining the same training hyperparameters and report results in
Table 1. We find that all added augmentation contribute to the robustness of
the model across all anatomical landmarks, with fetal inpainting combined with
all remaining augmentations yielding the best model overall.

4 Conclusion

This study addresses the clinical need for a more reliable fetal pose estimation
method. We demonstrate how our augmentation approach, including a fetal in-
painting method, can significantly improve performance, particularly in the early
GA range. These advancements make the model clinically applicable, enabling
clinicians to answer critical questions regarding fetal motion and neurological
development with greater accuracy.
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