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Abstract. Registration of diffusion MRI tractography is an essential
step for analyzing group similarities and variations in the brain’s white
matter (WM). Streamline-based registration approaches can leverage the
3D geometric information of fiber pathways to enable spatial alignment
after registration. Existing methods usually rely on the optimization of
the spatial distances to identify the optimal transformation. However,
such methods overlook point connectivity patterns within the streamline
itself, limiting their ability to identify anatomical correspondences across
tractography datasets. In this work, we propose a novel unsupervised ap-
proach using deep learning to perform streamline-based dMRI tractog-
raphy registration. The overall idea is to identify corresponding keypoint
pairs across subjects for spatial alignment of tractography datasets. We
model tractography as point clouds to leverage the graph connectiv-
ity along streamlines. We propose a novel keypoint detection method
for streamlines, framed as a probabilistic classification task to identify
anatomically consistent correspondences across unstructured streamline
sets. In the experiments, we compare several existing methods and show
highly effective and efficient tractography registration performance.
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1 Introduction

Diffusion MRI (dMRI) tractography is an advanced tool for in vivo mapping of
the brain’s white matter (WM) fiber tracts [4]. It enables the estimation of the
3D anatomical trajectories of fiber pathways, referred to as the streamlines. Reg-
istration of tractography streamlines is an essential step in applications such as
between-population tract quantification [6,7] and fiber tract atlas construction
[32]. Currently, tractography registration is most often performed by applying
transformations derived from registration using volumetric images such as scalar-
valued fractional anisotropy (FA) [18,23], and diffusion models with fiber orien-
tation information [31,33]. On the other hand, many registration methods are
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designed to align tractography streamlines directly [13,19,20], which aligns with
the scope of our study. Compared to the volumetric registration, streamline-
based methods can leverage the 3D geometric information of fiber pathways
for improved alignment of fiber tracts. Therefore, streamline-based registration
methods hold advantages in the applications with the eventual goal of modeling
and analysis of WM fiber tracts.

Currently, existing streamline-based registration methods employ traditional
formulations that solve optimization problems iteratively to align tractography
datasets via an energy function [24]. Registration is performed by minimizing the
geometric dissimilarity (e.g., Euclidean distance) between the sets of streamlines
to spatially align the corresponding fiber tract structures in the brain. However,
this process is often computationally intensive due to the need to calculate pair-
wise streamline similarities. Additionally, steamline misalignment may occur be-
cause different anatomical tracts can exhibit similar geometric shapes. Advances
in deep learning have shown not only significantly improved accuracy [11,15]
but also improved computational efficiency in medical image registration. In re-
lated work, recent studies have successfully applied deep learning for improved
volumetric dMRI registration [14,31]. However, there are yet no deep learning
methods for streamline-based dMRI tractography registration.

One major challenge in performing streamline registration is how to establish
the correspondence between streamlines across subjects. In tractography, stream-
line points are unstructured and represented in Euclidean space, with each point
defined by its spatial coordinates (e.g., Right-Anterior-Superior, RAS). This un-
structured representation results in the absence of a direct correspondence be-
tween tract structures across different subjects. Instead of directly comparing
streamlines, a more intuitive approach is to align anatomically equivalent points
across subjects within a shared space. This idea is inspired by the recent volume-
based registration method, KeyMorph [27], which introduces a framework for de-
tecting corresponding keypoints, from which the transformation for registration
is then computed. Therefore, we propose to divide the streamline registration
process into two sequential steps: (1) detecting corresponding points from moving
and fixed tractography, and (2) computing the optimal spatial transformation
based on these correspondences.

In light of the above, we propose a novel streamline-based registration method
for dMRI tractography data with a newly proposed streamline probabilistic key-
point detection framework. Our contributions are as follows. First, our method
models tractography as a multi-graph structure consisting of interconnected
streamlines and thus can leverage the graph connectivity along streamlines to
capture structural relationships among the points. To the best of our knowledge,
this is the first streamline-based deep learning dMRI tractography registration
approach. Second, we introduce a novel keypoint detection strategy formulated
as a probabilistic classification task, which enables the identification of anatom-
ically consistent correspondences across inherently unstructured streamline sets.
Third, our method is an end-to-end network capable of detecting robust cor-
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Fig. 1. Method Overview. The network consists of two main modules: (1) a keypoint
detection network to detect the corresponding keypoint pairs in moving and fixed
tractography streamlines, and (2) a thin plate spline (TPS) solver [5,22] to predict the
transformation based on the keypoint pairs.

responding keypoints across subjects and computing optimal transformations
within a unified framework.

2 Methods

2.1 Overall Architecture

The goal of our method (Fig. 1a) is to register tractography streamlines between
a pair of input subjects. It consists of two main modules: (1) a keypoint detection
network to detect the corresponding keypoint pairs in moving and fixed trac-
tography streamlines, and (2) a thin plate spline (TPS) solver [5,22] to predict
the transformation based on the keypoint pairs. The two modules interact in a
feedback loop: the TPS solver’s optimal transformation guides the keypoint de-
tector, refining inter-subject keypoint correspondence, while improved keypoint
correspondence enhances the TPS solver’s spatial transformation accuracy.
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2.2 Keypoint Detection Network

Our keypoint detection network is guided by the hypothesis that anatomically
consistent features exist across subjects, differing primarily in spatial position
due to individual anatomical variability. The network identifies keypoint loca-
tions by modeling their streamline point connectivity relative to the neighboring
streamlines rather than relying solely on their spatial coordinates.

Probabilistic Keypoint Detection. Consider that an input tractography
dataset is composed of N streamlines, each streamline contains P points, and
the spatial coordinate of each point is xp. Our goal is to estimate the spatial
coordinates of a total of K keypoints. To do so, we model that the spatial coor-
dinate of the k-th keypoint xk follows a distribution p(x|k) that can be estimated
based on the distribution of the coordinates of all input points. Specifically, we
approximate p(x|k) using p(xp|k) by discretizing it over all input points that
are assumed to follow a uniform distribution. Then, the expected location of the
keypoint xk can be computed as:

E (xk) :=
∑

xp · p(xp|k) (1)

Here, because p(xp|k) represents a probability distribution, so as to p(xp|k) > 0
and

∑
xp

p(xp|k) = 1. In this case, the detected keypoints lie within the convex
hull formed by all input points, ensuring that all identified keypoints are located
inside the brain and not in areas outside the brain regions. To compute p(xp|k),
we apply Bayes’ theorem [16], as follows:

p (xp|k) =
p (k|xp)∑
xp

p (k|xp)
p (xp) (2)

Here, because each point follows a uniform distribution over the entire tractog-
raphy space, the prior p(xp) becomes constant across all observations. Conse-
quently, when computing E(xk), the uniform prior p(xp) cancels out as a nor-
malization factor. Then, the key to resolving Eq. (2) is computing p(xp|k). In
our study, we propose to use a learnable classifier that computes the probability
of each point xp belonging to the k-th keypoint xp, as described below.

GCNN keypoint classifier. To compute the probability p(k|xp), we train a
Graph Convolutional Neural Network (GCNN) classifier [8,28] (as shown in Fig.
1b). We first construct a multigraph based on the streamlines, where each node
stores the 3D coordinates of a streamline point, and edges represent the sequen-
tial connections along each streamline. Each streamline point p first undergoes a
feature extraction block, consisting of a linear layer, an activation function, and a
normalization to embed p into a hidden feature space. Next, we apply edge con-
volution to the points along each streamline to capture the connectivity patterns
within the streamline itself, while simultaneously addressing the disconnectivity
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between different streamlines. The final layer uses a generalized SoftMax [1,3],
which adds a temperature parameter t to standard SoftMax to control output
sharpness and enable adjustable confidence calibration. This guarantees that the
probabilistic outputs satisfy that p(k|xp) > 0 and

∑
k p(k|xp) = 1.

2.3 TPS Solver for Transformation Estimation

We denote the keypoints detected on moving tractography as Pk(r, a, s), and
those on fixed tractography as Qk(r, a, s). Pk and Qk are classified into the same
anatomical category k by the GCNN keypoint classifier, which establishes them
as a matched pair. These corresponding keypoint pairs enable us to perform
a closed-form solution of optimal transformation: thin plate spline (TPS) [22],
which utilizes the correspondence between keypoint pairs to estimate the trans-
formation between two spaces with controllable distortion [34]. Specifically. The
transformation from the moving space to the fixed space can be computed as

T (xp) = A

[
xp

1

]
+

N∑
i=1

WiU
(
|Pk − xp|2

)
(3)

where A and W are parameters to be solved based on the input keypoints, U(·)
is the kernel function (U(r) = r2 ln(r)) [22] and | · |2 is the L2 norm. In our
work, we utilize the widely used TPS solver proposed in [22,27] to calculate the
parameters A and W, as follows:[

A
W

]
:=

[
K + λI KP
KPT O

]−1 [
KQT

O

]
(4)

where Kij = U(|Pi − Qj |2), O is the zero matrix, λ is a hyperparameter that
controls regularization strength.

2.4 Loss Function

We design a loss function to guide the GCNN classifier to find the robust keypoint
in both moving tractography M and the fixed F . After applying the transfor-
mation on moving tractography M , we minimize the average minimum distance
across all pairs of streamlines from T (M) and F , denoted as follows:

Loss =
1

N

∑
min
M∈M

L2,1 (T (M) , F ) +
1

N

∑
min
F∈F

L2,1 (T (M) , F ) (5)

where M and F represent the sets of tractography streamlines in the moving and
fixed datasets, respectively. We adopt the widely used L2,1 metric to quantify
the distance between the moved tractography M and the fixed F [25].

L2,1 (T (M) , F ) =
1

P

P∑
i=1

 3∑
j=1

|T (mij)− fij |2
 1

2

(6)

Here, mi and fi are the coordinates of the i-th point on streamline M and F .
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Patch-based Loss. Training on entire streamline sets is computationally ex-
pensive and memory-intensive, as distance calculations scale with the quadratic
complexity of pairwise comparisons. To mitigate this, we compute the loss on
randomly sampled streamline patches from moved and fixed tractography, re-
ducing the computational burden and memory consumption.

2.5 Inference

For inference to register a pair of testing subjects, each input tractography
dataset goes through the keypoint detection network (Sec. 2.2). From the de-
tected keypoints of the two subjects, transformation is then estimated using
the TPS Solver (Sec. 2.3). Finally, all points on streamlines are aligned into
the fixed tractography space by warping their coordinates using the estimated
transformation based on Eq (3).

2.6 Implementation

Our method is implemented using Pytorch 2.5 [21] and executed on a Linux
server equipped with NVIDIA 3090 GPUs. We set a total of 512 keypoints to be
detected and train a GCNN classifier using the Adam optimizer (initial learning
rate: 10−3, decayed by 0.5 every 10 epochs over 1,000 epochs). Each iteration
processes 4 patches of 2,200 streamlines (15 equidistant points per streamline).
The generalized SoftMax uses temperature t = 0.6, while the TPS solver’s λ
is sampled log-uniformly during training [27]. For the inference process, we de-
tect the keypoints on a subset consisting of 30,000 streamlines and then ap-
ply the transformation computed by a TPS solver with a fixed λ = 0.5 on
whole brain tractography. The implementation of our method will be available
at https://github.com/eiroW/TractoMorph

3 Experiments and Results

3.1 Experimental Datasets

We use the tractography data provided in TractSeg [29] (https://doi.org/10.5281/
zenodo.1088277), derived from dMRI data from 105 subjects in the Human Con-
nectome Project (HCP) Young Adult [26]. For each subject, the provided whole
brain tractography data contains about 1.6 million streamlines. We choose to
use this data because each streamline is associated with an anatomical label for
experimental evaluation (Sec. 3.2). In our experiments, we allocate 90 subjects
for training, 5 subjects for validation, and 10 subjects for testing.

3.2 Experimental Design

Comparison to SOTA Methods. We evaluate our method against both
volume-based and streamline-based registration methods. To compare with un-
supervised volume-based methods include SyN [2] in ANTs and SynthMorph [17]

https://github.com/eiroW/TractoMorph
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Fig. 2. Visualization of registration performance across different methods. Our method
generally results in a better spatial overlap between two tracts than other methods,
yielding a more merged and parallel alignment, depicted as a more merged color.

in FreeSurfer, we adjust the registration pipeline, taking b0 images as input to
compute spatial transformations, followed by warping the moving tractography
data using 3D Slicer [10,30]. Streamline-based methods include Streamline-based
Linear Registration (SLR) [7] from DiPy and a nonlinear registration method in
White Matter Analysis (WMA) [4]. These methods directly process whole-brain
tractography datasets to align streamlines.

Ablation Study. The key of our method is to leverage the corresponding key-
points detected using our Keypoint Detection Network. To assess its perfor-
mance, we replace it with a nearest-neighbor (NN) algorithm that randomly
samples keypoints from the input tractography datasets. The correspondence
between these keypoints is computed based on a Euclidean distance-based NN.
The resulting correspondences are fed into the TPS solver to estimate a spatial
transformation which is applied to align the entire moving tractography.

Evaluation Metrics. To quantify registration quality, we assess whether the
corresponding anatomical fiber bundles are aligned after registration. This take
advantage of the predefined anatomical labels of each steamline provided in the
experimental tractography data. For each fiber bundle, two metrics are com-
puted: weighted Dice Score (wDice) [9] and the Average Bundle Distance (ABD)
[13] . The wDice extends the standard Dice metric by incorporating tract in-
tensity, weighting each class by the inverse of its tract intensity to balance their
contributions to the overall similarity. The ABD is defined as the average of the
minimum Mean Direct-Flip (MDF) distances[12] between each streamline in the
moving set and all streamlines in the fixed set, and vice versa.
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Table 1. Comparison of wDice and ABD across different methods.

Methods ABD wDice
mean(mm) std mean std

Volume-based SyN 3.794 1.054 70.3% 15.6%
SynthMorph 3.468 0.947 77.9% 14.0%

Streamline-based

WMA 3.899 0.928 65.1% 15.5%
SLR 3.557 0.738 70.7% 12.9%
NN+TPS 4.530 1.58 58.2% 19.2%
Proposed 3.338 0.711 74.8% 12.5%

3.3 Results

Quantitative Results. Table 1 shows the results of the quantitative compari-
son between all the volume- and streamline-based methods. Our method obtains
the lowest ABD with all pairwise t-tests showing FDR-adjusted p < 0.001 com-
pared to other methods, indicating superior spatial alignment. Regarding wDice,
our method overperforms all streamline-based methods, and also the voxel-wise
ANTs(FDR-adjusted p < 0.001), except for SynthMorph. One potential reason
is that SynthMorph operates on dense volumes, so it can better find volumetric
overlap. In particular, our method registers all 1.6 million moving streamlines to
the fixed space in approximately 15 seconds on average, outperforming all other
registration methods in terms of speed.

Visual Results. In Fig 2, we can observe that our method generally results in
a better spatial overlap between two tracts than other methods, yielding a more
merged and parallel alignment (depicted as a more merged color). Additionally,
in the black-circled regions, our method achieves better local direction alignment
compared to the other methods.

Furthermore, we visualize the detected keypoints between moving and fixed
subjects before and after registration (Fig. 3). The results show that the network
successfully identifies correspondences between subjects and accurately captures
the displacements across different parts of the tracts (arcuate fasciculus, AF, and
middle cerebellar peduncle, MCP). These identified keypoints as robust anchors
for estimating the nonlinear spatial transformation, enabling precise alignment
of entire streamline sets.

4 Conclusion

This work proposes a novel streamline-based registration method for dMRI trac-
tography data. Our method is an end-to-end unsupervised learning framework
that is capable of detecting robust corresponding keypoints across subjects and
computing optimal transformations within a unified framework. Our results show
highly effective and efficient registration performance and demonstrate the ben-
efit of using deep learning for tractography registration tasks.
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Fig. 3. Left: Keypoints detected in moving and fixed tractography. Right: Keypoint
correspondence (whole brain, AF and MCP) before and after registration. The corre-
spondences between subjects and the displacement is highlight in black.
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