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Abstract. The hippocampus in the brain performs a pivotal role for memory for-

mation, spatial navigation, and emotional regulation. Its volume and morphology 

are known to change with the progression of neurodegenerative diseases such as 

Alzheimer’s disease. Hence, hippocampal atrophy serves as a key biomarker for 

early diagnosis and monitoring of such diseases. Whereas MRI has been predom-

inantly employed in that regard due to its excellent soft-tissue contrast, CT-based 

segmentation of the structure has been relatively far less explored because the 

modality results in ambiguous boundaries between brain subregions. This study 

aims to address this technical challenge, achieving accurate segmentation of the 

hippocampus on CT images. To this end, we develop a deep learning model, 

termed ‘Hippocampus Dual Decoder Network (HDD-Net)’, characterized by the 

following four major components: 1) parallel, dual decoders that segment the 

hippocampal region and its boundaries, respectively, 2) a single, shared encoder 

in which features combined across multiple blocks are refined via attention, 3) a 

feature fusion module (FFM) that performs inter-decoder featural supplements, 

and 4) a cross loss to jointly optimize segmentation and edge predictions. HDD-

Net was validated using both internal and external datasets, with its performance 

assessed using Dice similarity coefficient (DSC) and intersection-over-union 

(IoU). Our model yielded DSC = 0.823 ± 0.03 and IoU = 0.701 ± 0.04, and DSC 

= 0.759 ± 0.07 and IoU = 0.617 ± 0.09 for internal and external test datasets, 

respectively, outperforming seven other SOTA methods. Furthermore, volumet-

ric analysis revealed a good agreement between MRI- and CT-derived hippocam-

pal masks. Our findings suggest feasibility of CT-based hippocampal segmenta-

tion via HDD-Net, as a cost-effective alternative to MRI. The implementation of 

HDD-Net is available at https://github.com/sonwonjun103/HDD_Net. 
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1 Introduction 

The hippocampus in the brain plays a crucial role in memory formation, spatial navi-

gation, and emotional regulation, and abnormalities in its volume and morphology 

linked to Alzheimer’s disease, epilepsy, PTSD, schizophrenia, and depression [1-3]. 

Magnetic resonance imaging (MRI) has been regarded as the gold standard for hippo-

campal segmentation due to its excellent soft-tissue contrast. Nevertheless, high cost 

and long acquisition time make its application difficult in certain clinical settings, par-

ticularly with limited-resource environments. Computed tomography (CT) can be con-

sidered as a more accessible and cost-effective alternative to MRI. However, near-flat 

contrast across brain subregions in CT images renders hippocampal segmentation from 

the modality challenging.  

Recent advances in CNN-based architectures like U-Net [4] and transformer-based 

models such as UNETR [5] and TransUNet [6] have significantly improved segmenta-

tion performance. Accordingly, deep learning (DL)-based medical image segmentation 

has been extensively explored [7, 8], yet a majority of which are on MRI [9-12]. One 

of very few studies attempting DL segmentation of the hippocampus from CT scans is 

AG-3D ResNet by Portal et al. [13]. The authors integrated attention mechanisms into 

a 3D ResNet [14] backbone as a means to enhance feature extraction, and showed fea-

sibility of CT-based hippocampal segmentation using DL. 

In this work, we were aimed to enhance performance of DL segmentation of hippo-

campus on CT head images. To achieve this goal, we conceived a novel DL model, 

termed “Hippocampus Dual Decoder Network (HDD-Net)”, and evaluated its perfor-

mance in reference to MRI-derived hippocampal labels. 

2 Methods 

The overall architecture of HDD-Net, shown in Fig. 1, is designed to address the chal-

lenges of hippocampal segmentation on CT images. It consists of four key components: 

dual-decoder, a shared encoder, feature fusion module (FFM), and a cross loss function. 

By leveraging its dual-decoder structure, the network takes preprocessed volumetric 

3D CT images as input and produces two outputs: hippocampal masks and correspond-

ing edges. Details in each component are described in the following subsections. 

 

2.1 Dual Decoder 

The dual decoder architecture enables HDD-Net to leverage both volume- and edge-

specific information, thereby achieving performance elevation in hippocampal segmen-

tation. It consists of a Segmentation Decoder, which predicts the hippocampal region, 

and an Edge Decoder, which extracts boundaries of the structure. It ensures that the 

model captures complementary aspects of the hippocampal structure, addressing the 

challenges posed by its small size and complex anatomy. 
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Both decoders share a same structure with different training parameters, comprising 

a series of up-sampling and convolutional layers to progressively restore spatial reso-

lution. Each decoder block contains two convolutional layers with kernel size 

3 × 3 × 3 followed by batch normalization and ReLU activation with an up-sampling 

layer applied at the end of each block. The filter sizes in the decoder layers progres-

sively decrease, following a sequence of (512, 256, 128, 64), with a final kernel size 

1 × 1 × 1 convolution layer at the end that uses a reduced filter size of 32 and performs 

the convolution operation only once. A soft-max function is applied at the end of each 

decoder to generate normalized probability maps. 

 

 

 

Fig. 1.  The architecture of the proposed HDD-Net. (a) The network consists of dual decoders 

(Segmentation Decoder and Edge Decoder), a shared encoder, a feature fusion module (FFM), 

and a cross loss function. (b) Detailed structures of the convolutional blocks used in the en-

coder and decoders. 

2.2 Shared Encoder 

The shared encoder is responsible for extracting multi-scale spatial and contextual fea-

tures from the input volumetric 3D CT images. It consists of five convolutional blocks 

with filter sizes set to (32, 64, 128, 256, 512). 
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Fig. 2. (a) The feature fusion module (FFM) enables interaction between the Segmentation De-

coder and Edge Decoder through dilated convolution, channel attention, and feature integration 

via elementwise operations. (b) The cross loss jointly optimizes volumetric and edge predic-

tions by aligning them with the respective ground truths using segmentation and edge loss cal-

culations. 

The first block begins by processing the input using an initialization block (Init), 
which applies two 3 × 3 × 3 convolution layers, each followed by batch normalization,  

ReLU activation, and max-pooling layer, produced the first-level feature map (𝐸1). 

From the second block onward, each block (𝑂𝑐𝑜𝑛𝑣) concatenates features from the out-

puts of the two preceding blocks after being downsampled (𝑂𝑟𝑒𝑑𝑢𝑐𝑒) to match dimen-

sions. A channel attention (𝑂𝐶𝐴) [15] is used to emphasize the most relevant channels 

in the concatenated features, improving feature quality. These refined features are then 

passed through max-pooling layer followed by two convolution layers with batch nor-

malization and ReLU activation. Additionally, skip connections from each block to 

corresponding decoder blocks help retain spatial information during reconstruction. 

Formally, the process can be described as: 

 

E1=Init(Input) 

E2=Oconv(OCA(Concat(Input, E1))) 
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E3=Oconv(OCA(Concat(Oreduce(E1),E2))) 

E4=Oconv(OCA(Concat(Oreduce(E2),E3))) 

E5=Oconv(OCA(Concat(Oreduce(E3),E4))) 

 

where 𝐸𝑖(𝑖 = 1,2,3,4,5) represents the feature map from each ith blocks. 

 

2.3 Feature Fusion Module (FFM) 

FFM enables interaction between the Segmentation Decoder and the Edge Decoder, as 

illustrated in Fig 2(a). By combining the features extracted by the two decoders, the 

FFM provides a comprehensive representation that incorporates both volumetric and 

edge-specific information, leading to more precise segmentation results. 

The fusion process begins with a dilated convolution [16] with kernel size 3 × 3 × 3 

(dilation =1, 3, 5, 7), which expands the receptive field to capture multi-scale contextual 

information. This is followed by a channel attention [15] that dynamically recalibrates 

feature maps to prioritize the most relevant channels. To seamlessly integrate features 

between the decoders, the FFM performs targeted operations that enhance both volu-

metric and edge predictions. Specifically, the feature map from the Segmentation De-

coder is combined with the FFM-processed edge feature map through elementwise mul-

tiplication, enabling the model to enhance edge predictions by leveraging volumetric 

features. Simultaneously, the feature map from the Edge Decoder is combined with the 

FFM-processed segmentation feature map using elementwise addition, allowing the 

model to refine volumetric predictions by incorporating detailed edge information.  

This bidirectional flow in information ensures effective collaboration between the 

decoders, enabling model to capture both global structural details and fine-grained 

edges with high precision. 

 

2.4 Cross Loss 

The cross loss, depicted in Figure 2(b), is a custom-designed function that jointly opti-

mize the outputs of the Segmentation Decoder and the Edge Decoder, ensuring accurate 

prediction of both hippocampal volumes and edges. By integrating segmentation loss 

(𝐿𝑠𝑒𝑔) and edge loss (𝐿𝑒𝑑𝑔𝑒), the cross loss enables the model to focus on complemen-

tary aspects of segmentation accuracy. This dual optimization is achieved through a 

combination of dice loss and cross-entropy loss (𝐿𝑑𝑖𝑐𝑒&𝐶𝐸 ), which together enhance 

both overlap-based and pixel-wise classification performance. 

The segmentation loss measures the difference between the predicted hippocampal 

volume (𝑌𝑃𝑉
) and the ground truth hippocampal volume (𝑌𝐺𝑇𝑉

). Additionally, it evalu-

ates the consistency of in-painted predicted edge volume (𝑌𝑃𝐸→𝑃
𝑉′ ) with the ground 

truth hippocampal volume (𝑌𝐺𝑇𝑉
), ensuring alignment between volumetric and bound-

ary features: 

𝐿𝑠𝑒𝑔 = 𝐿𝑑𝑖𝑐𝑒 & 𝐶𝐸(𝑌𝑃𝑉
, 𝑌𝑔𝑡𝑉

) + 𝐿𝑑𝑖𝑐𝑒 & 𝐶𝐸 (𝑌𝑃𝐸→𝑃
𝑉′ , 𝑌𝑔𝑡𝑉

) (1) 
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The edge loss ensures the consistency of predicted edge volumes (𝑌𝑃𝐸
) with the ground 

truth edge volume (𝑌𝐺𝑇𝐸
) and evaluates edges extracted from predicted volumes 

(𝑌𝑃𝑉→𝑃
𝐸′ ): 

𝐿𝑒𝑑𝑔𝑒 = 𝐿𝑑𝑖𝑐𝑒 & 𝐶𝐸(𝑌𝑃𝐸
, 𝑌𝑔𝑡𝐸

) + 𝐿𝑑𝑖𝑐𝑒 & 𝐶𝐸 (𝑌𝑃𝑉→𝑃
𝐸′ , 𝑌𝑔𝑡𝐸

) (2) 

 

Combining Eq. (1) and Eq. (2), the cross loss (𝐿𝑐𝑟𝑜𝑠𝑠) is defined as: 

 
𝐿𝑐𝑟𝑜𝑠𝑠 = 𝛼𝐿𝑠𝑒𝑔 + 𝛽𝐿𝑒𝑑𝑔𝑒  (3) 

 

where 𝛼 and 𝛽 are weighting factors. In this work, we set 𝛼 = 1 and 𝛽 = 1. 

3 Experiments and Results 

3.1 Experiments 

Datasets. We collected datasets from Gangnam Severance Hospital (GSH) and Seoul 

St. Mary’s Hospital (SSMH) with approval of both institutional review boards. In-

formed consent from the patients was waived due to the study’s retrospective nature. A 

total of 150 neurologically healthy individuals from GSH who underwent both brain 

CT and T1-weighted MRI [17] within three months were included, meeting specific 

imaging criteria. The GSH dataset was split into a training set (n=120) and internal test 

set (n=30), while an external validation set (n=47) from SSMH was selected using the 

same criteria. 

Data preprocessing. CT and MRI images were converted from DICOM to NIFTI for 

efficient handling and processing of 3D images. CT images were registered to MRI 

using SPM12 [18], normalized to HU range (-20 to 100), and min-max scaled to [0, 1], 

MR images were processed with Freesurfer [19], yielding hippocampal masks as 

ground truth, from which edges were extracted. Finally, co-registered CT-MRI pairs 

along with ground-truth labels were center-cropped from (256, 256, 256) to (96, 128, 

128).  

Implementation details. The proposed HDD-Net model implemented in this work 

comprises 100,195,112 learnable parameters, which were randomly initialized at the 

start of training. Hyperparameters we used during the training phase included a batch 

size of 4, a total of 150 epochs, and a learning rate of 0.0001 with the Adam optimizer. 

The network was implemented and trained using PyTorch 2.3.1 on two NVIDIA Ge-

Force RTX 3090 Ti GPUs, each equipped with 24GB of memory. The implementation 

of HDD-Net is available at https://github.com/sonwonjun103/HDD_Net. 

Evaluation. The performance of the proposed model was evaluated using two standard 

metrics: Dice similarity coefficient (DSC) and Intersection over Union (IoU). 
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Additionally, Bland-Altman analysis was conducted to assess volumetric agreement 

between MRI-based ground truth and CT-based segmentation results. 

 

3.2 Results 

Qualitative analysis. Fig 3 illustrates representative segmentation results for test sub-

ject. The first column shows CT image, while the second column shows the correspond-

ing MR image. The final column shows the overlaid the ground truth hippocampal seg-

mentation with the prediction map generated by HDD-Net. Additionally, the 3D ren-

derings further validate the model’s accuracy, as the predicted hippocampal segmenta-

tion maps closely resemble the hippocampus derived from MR images. This con-

sistency across modalities emphasizes the models’ capability to address the challenges 

of hippocampus segmentation in non-contrast CT images, producing results compara-

ble to MRI-based ground truths. 

 

 

Fig. 3. Visualization of hippocampus segmentation results. The left section shows axial, coro-

nal, and sagittal views of CT images, MRI ground truth, and overlaid segmentation results. 

(Red: ground truth volume, Green: overlaid volume, Light green: predicted volume). The right 

section provides 3D renderings of hippocampal volumes from the MRI ground truth and the 

predicted volume by the proposed model. 

Evaluation scores. On internal datasets, the model achieved a mean DSC of 

0.823±0.03 and IoU of 0.701±0.05. For external datasets, the model achieved a mean 

DSC of 0.759±0.07 and IoU of 0.617±0.09. To evaluate the performance of HDD-Net, 

a comparative study was conducted against widely-used U-Net based models in medi-

cal segmentation, summarized in Table 1. These models include the standard U-Net, it 

enhanced version such as Attention U-Net [21] and nnU-Net [22], as well as models 

integrating transformer blocks like 3D TransU-Net [6], Swin U-NetR [23], and U-NetR 
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[5]. Additionally, the comparison included the AG-3D ResNet proposed by Portal et al 

[13]. Our model outperformed these models across both internal and external datasets. 

Table 1. Performance comparison of HDD-Net with U-Net based segmentation models. 

Bland-Altman analysis. To evaluate the agreement between MRI-based and DL-based 

CT segmentations, bland-altman analysis conducted for internal and external datasets. 

For the overall volumetric differences, it showed a mean difference 0.53𝑐𝑚3 /1.17𝑐𝑚3 

for internal and external datasets, respectively (Fig 4(a) and Fig 4(b)), indicating good 

agreement between the two hippocampal volumes. 

 

 

Fig. 4. Bland-Altman plots illustrating the differences in hippocampal volumetric measure-

ments between MRI-based segmentation and DL-based segmentation on CT scans for (a) inter-

nal datasets (n=30) and (b) external datasets (n=47). 

4 Discussion and conclusions 

HDD-Net is a novel dual-decoder deep learning model designed for hippocampal seg-

mentation from CT images, addressing the limitations of MRI dependency in clinical 

applications. By integrating a FFM for bidirectional feature exchange and a cross loss 

for joint optimization, HDD-Net achieves superior segmentation performance. The 

Models 
Internal (n=30) External (n=47) 

DSC IoU DSC IoU 

U-Net [20] 0.784±0.04 0.647±0.06 0.718±0.07 0.565±0.08 

Attention U-Net [21] 0.775±0.04 0.635±0.06 0.694±0.08 0.538±0.09 

nnUNet [22] 0.769±0.03 0.626±0.05 0.588±0.06 0.419±0.06 

TransUNet [6] 0.773±0.03 0.632±0.05 0.589±0.05 0.420±0.05 

UNETR [5] 0.656±0.06 0.491±0.06 0.508±0.13 0.351±0.11 

Swin UNETR [23] 0.650±0.07 0.485±0.07 0.558±0.14 0.400±0.13 

AG-3D ResNet [13] 0.762±0.06 0.620±0.07 0.673±0.13 0.516±0.11 

HDD-Net (Ours) 0.823±0.03 0.701±0.05 0.759±0.07 0.617±0.09 
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model outperforms existing U-Net and transformer-based methods on both internal 

and external datasets, demonstrating its effectiveness in CT-based hippocampal seg-

mentation. Notably, this method enables hippocampal volumetric analysis in environ-

ments where MRI is limited or unavailable, broadening its clinical applicability. 

 In conclusion, HDD-Net presents a promising approach to hippocampal segmenta-

tion from CT, expanding accessibility to hippocampal volumetric analysis in MRI-

limited environments. By eliminating the need for MRI in segmentation tasks, this 

method could enhance clinical workflows in Alzheimer’s disease assessment and hip-

pocampal avoidance whole-brain radiotherapy.  
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