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Abstract. MoDiff is a morphology-emphasized diffusion model designed
for ambiguous medical image segmentation. It replaces traditional one-
hot encoding with probability-based label maps to capture inherent un-
certainties and ensure consistent segmentation results. By determining
the presence of individual radiologist labels, MoDiff enables diverse sam-
pling that provides richer insights into ambiguous areas. Its Learnable
Discrete Frequency Filter (LDF) extracts high-frequency details for im-
proved boundary precision, and when integrated with the Morphology-
based Cross Attention Network (MCA), it enhances feature synthesis for
more accurate anatomical segmentation. Evaluations on the LIDC-IDRI
and MS-MRI datasets confirm its superior accuracy, boundary precision,
and consistency.
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1 Introduction

In recent years, probabilistic segmentation models—such as the Probabilistic U-
Net [16], Conditional Variational Autoencoders (cVAE) [1], and diffusion models
[5,12] have shown promise in addressing uncertainties in medical image analysis
by generating multiple plausible segmentation hypotheses. However, sampling re-
peatedly from learned probability distributions can lead to inconsistent or overly
varied outputs, complicating precise delineation of critical structures like organ
boundaries. This inconsistency may result in conflicting clinical interpretations,
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especially in tasks such as tumor diagnosis or organ segmentation. Moreover,
training by randomly selecting reference labels fails to utilize all available anno-
tation information.

To overcome these limitations, we propose the Morphology-Emphasized Dif-
fusion Model for Ambiguous Medical Image Segmentation (MoDiff). MoDiff pro-
cesses ambiguous medical images using a diffusion-based probabilistic segmen-
tation approach that emphasizes morphological consistency. Unlike traditional
methods using one-hot encoded label maps, we train the model with probability
distribution-based label maps, enabling it to capture the inherent variability in
medical annotations and produce consistent segmentation results across multiple
samples.

Furthermore, to effectively extract morphological features and enhance noise
reduction during the reverse diffusion process, we introduce the Learnable Dis-
crete Frequency Filter (LDF) and the Morphology-based Cross Attention Net-
work (MCA). LDF detects subtle boundary details and filters high-frequency
noise using learnable parameters, while MCA synthesizes the derived features
into a robust condition for denoising. This combined approach facilitates faster
and more accurate learning of morphological structures compared to traditional
methods.

2 Related Work

2.1 Stochastic Segmentation for Medical Imaging

Medical imaging inherently presents uncertainties due to device noise, low res-
olution, and anatomical variations. Stochastic segmentation techniques address
these challenges by modeling uncertainty in the latent space to generate diverse
segmentation outputs [3]. Notably, the Probabilistic U-Net [16] combines the
U-Net architecture with a ¢VAE to produce multiple plausible segmentation
hypotheses, offering more consistent results than pixel-wise probability mod-
els. Furthermore, cFlow [6] utilizes normalizing flows to extend simple Gaussian
distributions into complex latent representations, while MoSE [7] and CIMD
[2] capture uncertainty through multi-modal Gaussian and diffusion-based ap-
proaches, respectively.

2.2 Conditional Diffusion Model

Conditional Diffusion Models (CDMs) guide the denoising process with addi-
tional conditions to generate high-quality, condition-specific outputs [11]. BerDiff
[9] replaces continuous Gaussian noise with the Bernoulli distribution to better
handle discrete segmentation tasks. MedSegDiff [10] further enhances perfor-
mance by integrating Dynamic Conditional Encoding and FFT-based noise sup-
pression into a U-Net framework. Additionally, CCDM [8] employs categorical
distributions to maintain clear label boundaries, resulting in more precise seg-
mentation outcomes.
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Fig. 1. a) This is a graphical model representing the overall reverse noise process in the
training phase of MoDiff. During training, at each step ¢, the input image b is added to
the noisy segmentation label 2; and used as the input image. Using the original label 27,
b) LDF performs morphological structure extraction and high-frequency noise filtering,
and c) the MCA, an attention-based network generating the final conditional image,
calculates the loss.

3 Method

3.1 Morphology based Cross Attention Network

The image z, € RT*WXC ig paired with segmentation labels lp,; (with ¢ denoting
multiple independent labels). Instead of randomly selecting a single label for
training—which would require ¢ times more iterations—we compute an average
probability map L; by averaging the ¢ labels at each pixel. This improves training
efficiency and result stability.

In conditional diffusion models, the condition directly affects performance,
yet medical images often exhibit ambiguous boundaries and low contrast (e.g.,
in MRI or CT), making it difficult to preserve anatomical structure. To address
this, we introduce MCA, which enhances morphological feature extraction. Tra-
ditional methods (like Canny or Sobel filters) fall short in capturing precise organ
contours, and denoising can further degrade label maps.

Our approach learns a high-frequency filter in the frequency domain tailored
to each image, enabling effective feature extraction with fewer denoising steps.
Specifically, the original image b is divided into 2 x 2 patches, while the sampled
label z; is subdivided into 4 x 4 patches. This subdivision reduces high-frequency
noise variance, as each patch in b maps to four patches in z; through linear
transformation and positional encoding. The linear mappings used in MCA are
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defined as follows:
Q=BWg, K=SWgk, V=5Wy, (1)

whereB = {z{,z2,...,20'} is the set of patches of the original image, andS is
the set of patches of the sampled label with LDF applied. Wqg, Wg, and Wy, are
learnable projection matrices. Attention scores calculated for each small patch
are concatenated to form S = [z}, z7,...,2}"]. The queries and keys are linearly
projected vectors, Q € RH/2ZW/24 [ ¢ RH/AW/416 anq V¢ RH/4W/416
Sinusoidal positional encoding is also added to represent the fixed position of
each patch. The attention score S’ = [x’tl,x’?, ..., a'}"] for each key and value
pair is calculated as follows:

2= (m%an)(w;an)T
t \/g 9

where 2/}" is the attention score embedded for the m-th label patch, W, and
W), are learnable weight matrices, and d is the dimension of the key vector K.
Softmax normalization is omitted to maximize the contrast between noise values
and actual label values, enhancing noise removal performance. The MCA encoder
FE, utilizing the computed S and B, operates as follows:

(2)

y? =[f(B) |5, (3)
O = fB(Squeeze(LDF(B))) + MSA (LN(LDF(y?))), (4)
=% =1g%(0")| B, (5)

where fZ is an embedding function, g® is a mapping function, and || denotes
vector concatenation. LN represents layer normalization, and MSA is multi-head
self-attention. MSA additionally applies softmax normalization to the formula
for calculating the attention score of S, and the denominator includes multiplied
by the number of heads h. In this study, the number of heads used is 4. The
graphical model of proposed approach is illustrated in Figure 1.

3.2 Learnable Discrete Frequency Filter

To further enhance morphological feature extraction and effectively remove noise,
we introduce the LDF into MCA. LDF transforms MCAs output into the fre-
quency domain, applies convolution and a sigmoid function to create a high-
frequency filter, and then transforms it back to the spatial domain for noise
removal. The LDF process is defined as follows:

LDF(y?) = F! (o (F(y®) * H)), (6)

where y? is the input or intermediate output of the MCA encoder, representing
the embedding vectors of the original image and sampled label patches. F and
F ! denote the FFT and its inverse, respectively. H is a learnable high-frequency
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filter, which undergoes convolution and is normalized with a sigmoid function o.
The convolution is applied hierarchically with filter sizes of 3x3, 5x5, and 7x7,
and a stride value is used to preserve the shape of the input image. The calculated
attention score is used as a condition for each reverse diffusion process and is
concatenated with z, for training. To prevent overfitting, the original image is
also concatenated to the generated c¢;, which is then used to infer the label for
the next step.

3.3 Training

The diffusion model’s primary loss, Lsimple, is defined as the mean squared error
between the predicted noise €y and the actual noise e. However, this loss alone
does not suffice for low-contrast, single-channel medical images. Therefore, aux-
iliary loss functions based on LDF and MCA are introduced.

For LDF, to ensure the generated feature map preserves the original image’s
morphological details, we add an auxiliary loss:

ELDF =E |:||LDF(Z/B) - yfxrget”ﬂ ’ (7)

where ygrget is the ideal morphological feature map. This term drives LDF to
produce feature maps that closely match the desired structural details.

For MCA, an attention regularization loss, Lyca , is introduced to control the
distribution of attention scores. This helps prevent bias toward specific patches
and ensures the attention mechanism effectively learns the relationship between
the original image and its sampled label.

The overall loss function is a weighted sum:

Liotal = Lsimple + M LLDF + A2Lnca, (8)

with A\; = Ay = 0.5. This configuration improves noise removal while enhancing
morphological feature extraction and balanced attention learning.

During training, the model parameters are updated via backpropagation to
minimize Liotal, thereby simultaneously boosting denoising capability and seg-
mentation performance.

4 Experiments

4.1 Dataset and Experimental setup

Lung Image Database Consortium image collection (LIDC-IDRI) We
used the LIDC-IDRI dataset [14], comprising 1,018 low-dose chest CT scans from
1,010 subjects. Lung nodules were annotated by 12 radiologists, with each nod-
ule labeled by four radiologists based on location, size, shape, and malignancy.
The dataset provides 128 x128 pixel 2D patches centered on each nodule. The
training set includes 14,000 lesion images, while the test set has 1,096 images.
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Multiple Sclerosis Lesion Segmentation (MS-MRI) This dataset [15] con-
tains longitudinal MRI scans from five subjects focused on white matter lesions
in multiple sclerosis. Two radiologists independently annotated the lesions, and
each slice includes four modalities: proton density, FLAIR, MP-RAGE, and T2-
weighted images. It is split into 5,661 training and 767 test lesion images, with
preprocessed 128 x 128 pixel patches centered on the lesions.

Implementation Details The proposed method was implemented using the
PyTorch framework and a 4-way RTX 3090 setup. For CCDM and our model,
we set the time step T' = 250, while for other diffusion models, the time step
was set to T' = 1000 with a linear noise schedule. The optimizer used was Adam,
with a learning rate of le=* for MoDiff. Additionally, the scheduler was set to
ReduceLROnPlateau with a factor of 0.2 and patience of 10. For the compari-
son models, we used the parameters provided in their respective published code
or papers. For all models, the binary masks for each image were generated by
thresholding the predicted probability maps at 0.9, retaining only the pixels with
a probability of 0.9 or higher.

Evaluation Metrics We evaluate performance using several metrics: GED [17—
19] and HM-IoU [20, 21] assess distribution differences between generated and
ground-truth label maps, NCC [22] measures image similarity, CI [2] synthesizes
various evaluation criteria. Each metric is computed over n samples (e.g., GED,,),
with larger n yielding more precise estimates.

4.2 Comparison with the Baseline Methods

Quantitative Comparison As shown in Table 1, 2, Our model consistently
achieves lower GED,, and higher HM-IoU,, scores compared to other models,
indicating improved performance with lower GED,, and higher HM-IoU,, val-
ues. Additionally, MoDiff demonstrates competitive performance in terms of
NCC,, and CI,, scores against state-of-the-art models, where higher NCC,, and
CI,, values reflect better performance. Overall, these results demonstrate MoDiff
not only aligns more closely with the ground truth label distribution but also
maintains high structural similarity and diversity in the generated samples, out-
performing baseline methods across multiple evaluation metrics. Furthermore,
performance improves for all models when using 32 sampled labels with different
noise levels compared to 16 sampled labels. This suggests the model’s diversity
and ability to generate labels over a wider area contribute to enhanced perfor-
mance.

Qualitative Comparison Figure 2 illustrates visual comparisons between the
proposed MoDiff model and other baseline methods. As depicted, MoDiff cap-
tures finer details and exhibits smoother boundaries, particularly when dealing
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Table 1. Quantitative comparison of results with state-of-the-art ambiguous segmen-
tation networks in terms of GED, HM-IoU, NCC and CI on the LIDC-IDRI dataset.
The best results are shown in bold, achieving state-of-the-art performance across all
evaluation scores. Additionally, cases with a higher number of samples show relatively
better performance.

Method [GEDm HM-IoUis NCCi6 Clis [GED;;Q HM-IoUszz NCC3zz2 Cls2

Prob.Unet [16]{ 0.3050 0.5572 0.4795 0.7312]0.2998 0.5501 0.4810 0.7366
cFlow [6] 0.2252  0.5802 0.5234 0.6846 | 0.2258 0.5857  0.5289 0.6952
MoSE [7] 0.2176  0.6202 0.3900 0.72580.2096 0.6225 0.3987 0.7280
CIMD |[2] 0.2198 0.6125 0.4541 0.7482]0.2109 0.6184 0.4602 0.7543
CCDM |[§] 0.1690 0.7922  0.5553 0.8362|0.1678 0.8107 0.5570 0.8590
MoDiff (ours) |0.1159 0.8328 0.5929 0.8892(0.1163 0.8588 0.5953 0.8912

Table 2. Quantitative comparison of results with state-of-the-art ambiguous segmen-
tation networks in terms of GED, HM-IoU, NCC and CI on the MS-MRI dataset.
The best results are shown in bold, achieving state-of-the-art performance across all
evaluation scores. Additionally, cases with a higher number of samples show relatively

better performa

nce.

Method |GED;s HM-IoU;6 NCCi6  Clig |GED32 HM-IoUss NCCsz  Clso
Prob.Unet [16]]0.2956  0.7430  0.3734 0.6635[0.2573  0.7464 0.3778 0.6597
cFlow [6] 0.2674 0.7513  0.3341 0.7148 |0.2458 0.7611 0.3411 0.7322
MoSE [7] 0.3278  0.7054  0.3858 0.6223|0.3594 0.7154 0.3870 0.6332
CIMD |[2] 0.3984 0.6864 0.3247 0.6623|0.3566 0.6401  0.3276 0.6720
CCDM [g] 0.2306  0.8405 0.4005 0.7443|0.2289 0.8488 0.4013 0.7527
MoDiff (ours) [0.1671 0.8485 0.4109 0.7932[0.1659 0.8562 0.4128 0.8023
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Fig. 2. The lesion segmentation results of the selected MoDiff and previous models for
experiments are visualized. The left side shows the ground truth and the average label.
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with complex structures, outperforming other models in terms of visual fidelity.
This qualitative improvement complements the quantitative results and under-
scores the effectiveness of MoDiff in generating high-quality samples closely re-
sembling ground truth images.

Table 3. Ablation Study results of hyperparameters on all the datasets.

Module
MCA[LDF

LIDC-IDRI
GED HM-IoU NCC CI

MS-MRI
GED HM-IoU NCC CI

v

v
v |V

0.1432 0.7954 0.4933 0.8281
0.1339 0.8191 0.5231 0.8377

0.1163 0.8588 0.5953 0.8912

0.2335 0.7649 0.3394 0.7428
0.2116 0.7748 0.3561 0.7502
0.1659 0.8562 0.4128 0.8023

Table 4. Case Study results of Edge Detection Methods on all the datasets.

Method LIDC-IDRI MS-MRI
GED HM-IoU NCC CI GED HM-IoU NCC CI

Canny 0.2544 0.7588 0.4855 0.7590(0.2929 0.5883 0.3552 0.6313
Gaussian | 0.2465 0.7642 0.5444 0.7469 | 0.2814 0.6102 0.3893 0.6954
Roberts 0.2208 0.8034 0.4902 0.6820|0.2738 0.6659 0.3617 0.7512
Prewitt 0.2265 0.8061 0.5047 0.7469 | 0.2549 0.7091 0.3859 0.7427
Sobel 0.2044 0.8222 0.5331 0.7590]0.2126 0.7218 0.3996 0.7843
LDF (ours)|0.1163 0.8588 0.5953 0.8912/0.1659 0.8562 0.4128 0.8023

4.3 Ablation and Case Study

Tables 3 present the ablation study results on the LIDC-IDRI and MS-MRI
datasets, assessing the individual and combined contributions of the MCA and
LDF modules. When using MCA alone (first row), the performance is the lowest,
indicating its limited ability to capture detailed structural information. Employ-
ing only LDF (second row) improves several metrics, such as HM-IoU and NCC,
yet does not reach optimal performance. Notably, the joint use of MCA and LDF
(third row) yields the best results across all evaluation metrics, demonstrating
that these modules complement each other to enhance both segmentation accu-
racy and consistency.

Tables 4 provide a comparative case study of various edge detection methods
on the same datasets, including traditional approaches and the proposed LDF
method. The results clearly show that while conventional edge detectors achieve
moderate performance, they tend to concentrate weights on boundary pixels
around organ contours or other edge regions, thereby failing to fully utilize the
information from adjacent pixels. These findings underscore the superiority of the
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LDF method in accurately capturing edge details and maintaining segmentation
consistency on both LIDC-IDRI and MS-MRI datasets.

5 Conclusion

MoDiff is a morphology-emphasized diffusion model that tackles the challenges
of ambiguous medical image segmentation by integrating probability-based label
maps with a learnable morphological frequency space. This design enables the
model to capture inherent uncertainties and fine structural details across mul-
tiple annotations, resulting in consistent and precise segmentation. Extensive
evaluations on the LIDC-IDRI and MS-MRI datasets demonstrate that MoDiff
outperforms conventional probabilistic models in segmentation accuracy, bound-
ary delineation, and sample consistency. While increased sampling steps have
led to improved performance metrics, this comes at the expense of computa-
tional efficiency. To address this limitation, future work will focus on refining
the model architecture—exploring approaches such as noise scheduling and mul-
timodal structures to reduce the number of required sampling steps.
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