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Abstract. Accurate segmentation of retinal vessels is an important task.
Deep learning-based approaches have achieved impressive segmentation
performance on images with the same distribution as the training images.
However, the performance significantly drops when there is a substan-
tial disparity between the distributions of the training and testing data,
which limits the practical applicability of these methods in real-world sce-
narios. In this paper, we propose a novel test-time training (TTT) strat-
egy that employs a local contrast-preserving copy-paste (L2CP) method
to generate synthetic images in the target domain style. Specifically,
leveraging the thin nature of retinal vessel structures, we apply a simple
morphological closing to remove these structures from the test image.
This process yields a vessel-free image that retains the target domain’s
style, which we then employ as the background component for the syn-
thetic image. To realistically integrate retinal vessels from source domain
images into the background component, our L2CP method pastes the lo-
cal contrast map of the vessels, rather than their grayscale values, onto
the background component. This approach effectively mitigates the issue
of significant disparities in grayscale distribution between the foreground
and background across the source and target domains. Extensive TTT
experiments on retinal vessel segmentation tasks demonstrate that the
proposed L2CP consistently improves the model’s generalization ability
in retinal structure segmentation. The code of our implementation is
available at https://github.com/GuGuLL123/L2CP.

Keywords: Test Time Training · Domain Generalization · Vessel Seg-
mentation.

1 Introduction

Accurate segmentation of blood vessels is very important in many applications.
For example, an essential prerequisite for computational hemodynamics and reti-
nal fundus disease screening is the accurate segmentation of blood vessels [3].
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Fig. 1: Image, Background distribution, and foreground distribution of source
domain (first row), synthetic domain (second row), and target domain (third
row) images. Distribution difference between synthetic domain and target do-
main is significantly reduced compared to source-target domain discrepancy. The
histogram is obtained from the grayscale image.

Retinal vessel segmentation poses specific challenges compared to general object
segmentation [16]. Firstly, these structures are often thin and long, requiring spe-
cialized segmentation techniques for accurate extraction. Secondly, low contrast
(in particular for these thin vessels) between vessels and the background com-
plicates segmentation. Lastly, diverse appearances in color, texture, and back-
ground illumination present a significant challenge, requiring segmentation algo-
rithms to address and correct these changes.

Classical methods [12,11] focus on designing filters for extracting features re-
lated to vessel structures, often requiring careful parameter adjustments. Recent
deep learning methods [16,14,17,7,9,2,22,10,13,18,29,27,24] achieve remarkable
results and can be categorized into: 1) Designing networks for the elongated
structure of vessels [14,13]; 2) Incorporating prior knowledge of vessels [16,22];
3) Formulating loss functions specific to vessel shape and topology [7,18,29].
Despite impressive intra-dataset results, the challenge of domain generalization
often arises in real-world applications. For instance, notable distribution dis-
crepancies may arise between testing and training images due to ocular lesions,
see Fig. 1. Many methods that perform well within the domain encounter chal-
lenges in effectively generalizing to out-of-distribution (OOD) scenarios [16,30].
Test-time training (TTT) methods [1,21,23] aim at bridging the gap between
the training and testing datasets during the testing phase. TENT [21] reduces
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entropy-based loss to update the batch normalization layers for test samples
batch-wise. CoTTA [23] enables long-term adaptation for network parameters
to addresses the challenges of non-stationary environments in test-time domain
adaptation. However, these TTT methods are not specifically designed for the
thin nature of retinal vessels, leading to poor performance in cross-domain retinal
vessel segmentation.

In this paper, we generate local contrast-preserving copy-pasted image as a
bridge between the source domain and target domain to fine-tune model dur-
ing testing, addressing the domain generalization problem for retinal vessel seg-
mentation. Leveraging the prior knowledge that the retinal vessels are thin, we
utilize morphological closing to eliminate vessels from the target domain im-
ages. This process results in vessel-free images preserving the target domain’s
style, which we subsequently use as the background component for the syn-
thetic image. Subsequently, we propose a novel L2CP method to copy-paste
the local contrast maps in source domain images onto vessel-free background,
yielding realistic synthetic images that contain vessels of source domain images
and background preserving the target domain’s style. As show in Fig. 1, the
L2CP method effectively alleviates the problem of the large gap in both back-
ground and foreground grayscale distribution between source and target domain.
Fine-tuning the model using these synthetic images during testing is effective in
enhancing the model’s capability to handle out-of-distribution data. We conduct
TTT experiments using these synthetic images on three retinal blood vessel seg-
mentation dataset [19,6,4], resulting in significant and consistent performance
enhancements for the domain generalization task.

The main contributions of this paper are threefold. 1) We propose a simple
and novel strategy to realistically integrate vessels in source domain into the
target domain background component. The proposed L2CP effectively alleviates
the problem of the large gap in both background and foreground grayscale dis-
tribution between source and target domain. 2) We leverage synthetic image as
a bridge to fine-tune the model during testing. Furthermore, we conduct exten-
sive experiments in the field of generalizable retinal blood vessel segmentation
using multiple classical networks and datasets. The proposed L2CP consistently
enhances the model’s generalization capability in vessel structure segmentation.

2 Method

2.1 Test-time training with synthetic image

Problem setting. Given a model fθ0 pretrained by source domain data DS =
{(IS , GS)} (IS represents image and GS represents corresponding ground truth),
our goal is to enhance the performance of the current model for target domain
data DT = {IT } during inference time in an online manner. According to the
one-pass protocol [20], the testing samples are sequentially processed, and a
model update occurs after each testing sample is fed. At time step t, target
image ITt is given as input, we fine-tune the model’s partial parameters θt−1 → θt
according to ITt . The final prediction of ITt is predicted by fθt .
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Fig. 2: The pipeline of the proposed test-time training with local contrast-
preserving copy-paste (L2CP) strategy. The morphological closing is applied
to remove vessels from the test image. The proposed L2CP ensures vessels orig-
inating from the source domain are realistically pasted into the test image.

Overview of L2CP. The pipeline of the proposed framework is depicted in
Fig 2. The local contrast map CS is calculated using one source domain data
(IS , GS). When testing target domain image ITt at time step t, we employ math-
ematical morphology to remove vessels in an unsupervised manner, obtaining the
background component ĪTt . L2CP Copy-pastes CS into ĪTt , generating the syn-
thetic image IL2CP

t that contains vessels corresponding to GS and background
preserving the target domain’s style. Subsequently, we use GS as the ground
truth of IL2CP

t to fine-tune θt−1 → θt. Finally, we use fθt to get the segmen-
tation of ITt . The proposed method requires only a minimal amount of source
domain information (only one image and its corresponding annotation of retinal
blood vessel dataset), which adheres to the sTTT protocol [20] that allowing
access to a light-weight information from the source domain.

2.2 Generation vessel-free image of target domain style.

The inherent thinness of vessel structures results in their relatively low pixel
occupancy in images. Leveraging such inherent characteristics, we apply mor-
phological closing operation [8] to remove vessel structures in a given test im-
age. Since vessels are often relatively darker than the background [16], we em-
ploy morphological closing operations for image processing. Using kernel O =
{ (u, v) | u ∈ [−k, k], v ∈ [−k, k]} with size k to perform morphological closing
operation on an target image It can be denoted as ĪT = IT •O = (IT ⊕O)⊖O,
where IT ⊕O(x, y) = max(u,v)∈O{IT (x−u, y−v)} represents dilation operation
and IT ⊖O(x, y) = min(u,v)∈O{IT (x− u, y − v)} represents erosion operation.
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2.3 Local contrast-preserving copy-paste

Given the significant disparities in data distribution across domains, directly
pasting the gray values of vessels from the source domain into ĪT might result in
the situation that these structures’ gray values surpass those of the local back-
ground. This circumstance could undermine the effectiveness of the underlying
assumption that vessels inherently possess characteristics of being darker than
the context, potentially affecting the neural network’s fine-tuning process. To
ensure consistency in the local contrast between vessel structures and the sur-
rounding background in the synthetic image and the source domain image, we
propose L2CP method. We define V = {(x, y) | GS(x, y) = 1} as the set of co-
ordinates representing the vessels. For the position (x, y) ∈ V of vessels in the
source domain, we calculate the local contrast map by:

CS(x, y) = IS(x, y)− 1

|OV(x, y)|
∑

(u,v)∈OV(x,y)

IS(x− u, y − v), (1)

where OV(x, y) = {(u, v)|(u, v) ∈ O, (x− u, y− v) /∈ V} means local background
pixels around (x, y) and | · | denotes the cardinality. When (x, y) /∈ V , we define
CS(x, y) = 0.

For the position (x, y) ∈ V of vessels in the background removal image ĪT ,
we calculate the mean gray value in local background OV(x, y):

BT (x, y) =
1

|OV(x, y)|
∑

(u,v)∈OV(x,y)

ĪT (x− u, y − v). (2)

When (x, y) /∈ V, we define BT (x, y) = ĪT (x, y).
The synthetic image IL2CP using L2CP is defined as:

IL2CP (x, y) =

{
BT (x, y) + CS(x, y) (x, y) ∈ V

ĪT (x, y) (x, y) /∈ V
(3)

Using Eq. (1) - Eq. (3) , for (x, y) ∈ V, we have the following property:

IL2CP (x, y)− 1

|OV |
∑

(u,v)∈OT

IL2CP (x− u, y − v) = CS(x, y). (4)

This property guarantees that the synthetic image maintains a same local con-
trast map with the source domain image.

3 Experiments

3.1 Datasets and evaluation metrics

We evaluate the proposed method on three public datasets to demonstrate the
generalizability of the proposed method. DRIVE [19] dataset consists of 20
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Table 1: Comparison results of the proposed L2CP and TTT methods under
different baselines for cross-dataset evaluation on retinal vessel segmentation.

Cross-dataset
CHASEDB1 CHASEDB1 DRIVE DRIVE STARE STARE

⇓ ⇓ ⇓ ⇓ ⇓ ⇓ Average
DRIVE STARE STARE CHASEDB1 DRIVE CHASEDB1

Methods AUC F1 AUC F1 AUC F1 AUC F1 AUC F1 AUC F1 F1

UNet [15] 0.957 0.729 0.966 0.753 0.942 0.699 0.967 0.758 0.938 0.735 0.945 0.711 0.730
+Tent [21] 0.951 0.735 0.961 0.748 0.951 0.713 0.967 0.758 0.905 0.712 0.943 0.711 0.729
+Cotta [23] 0.957 0.744 0.964 0.754 0.944 0.716 0.968 0.761 0.929 0.718 0.949 0.715 0.734
+Dplot [26] 0.949 0.741 0.964 0.760 0.954 0.710 0.967 0.761 0.913 0.714 0.940 0.712 0.733
+L2CP 0.961 0.763 0.970 0.761 0.959 0.729 0.972 0.773 0.944 0.745 0.950 0.720 0.749

LadderNet [31] 0.961 0.739 0.970 0.747 0.958 0.719 0.964 0.751 0.964 0.748 0.902 0.693 0.732
+Tent [21] 0.955 0.730 0.944 0.715 0.940 0.711 0.955 0.734 0.957 0.719 0.887 0.660 0.711
+Cotta [23] 0.960 0.719 0.967 0.722 0.944 0.716 0.968 0.761 0.963 0.716 0.895 0.667 0.716
+Dplot [26] 0.952 0.706 0.960 0.707 0.909 0.688 0.946 0.733 0.958 0.718 0.893 0.679 0.705
+L2CP 0.965 0.769 0.973 0.759 0.956 0.725 0.968 0.760 0.965 0.771 0.932 0.720 0.751

LIOT [16] 0.966 0.686 0.979 0.759 0.978 0.773 0.966 0.726 0.958 0.702 0.939 0.593 0.706
+Tent [21] 0.967 0.709 0.981 0.773 0.977 0.771 0.965 0.716 0.959 0.713 0.941 0.618 0.717
+Cotta [23] 0.967 0.705 0.979 0.764 0.978 0.771 0.968 0.744 0.959 0.714 0.940 0.639 0.722
+Dplot [26] 0.967 0.713 0.980 0.772 0.976 0.774 0.967 0.736 0.960 0.717 0.945 0.633 0.724
+L2CP 0.966 0.735 0.980 0.784 0.980 0.775 0.966 0.728 0.957 0.745 0.942 0.672 0.740

Table 2: Quantitative results of L2CP generalizing from different sampling (su-
perscript) of varying numbers (subscript) of images.

F1 AUC
Exp11 Exp21 Exp31 Exp11 Exp21 Exp31
0.7712 0.7693 0.7707 0.9650 0.9639 0.9644
Exp12 Exp22 Exp32 Exp12 Exp22 Exp32
0.7718 0.7712 0.7708 0.9648 0.9650 0.9646
Exp13 Exp23 Exp33 Exp13 Exp23 Exp33
0.7710 0.7722 0.7712 0.9644 0.9649 0.9645

train images and 20 test images with a resolution of 565×584 pixels. STARE [6]
consists of 20 700× 605 retinal vessel images, which are divided into 10 training
and 10 test images. CHASEDB1 [4] consists of 28, 999 × 960 color retinal
images, split into 20 training images and 8 test images. We evaluate L2CP on
retinal vessel segmentation following the two evaluation metrics [16]: area under
the receiver operating characteristics curve (AUC), and F1-score.

3.2 Implementation details

To ensure the experimental process closely simulates the real-world application
scenario, all experiments strictly adhere to the one-pass protocol [20]. This in-
volves a single training iteration where inference is immediately conducted on
each sample. We use only one source domain image throughout all tests to de-
rive local contrast maps of the blood vessels. The experiments include one-step
fine-tuning process, using a batch size of 1. Throughout the adaptation phase,
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(a) Image (b) UNet (c) Dplot (d) L2CP (e) GT

Fig. 3: Some qualitative segmentation results of L2CP and some other methods
under cross-dataset evaluation on retinal images

we deploy the Adam optimizer with a learning rate set to 0.0001. The kernel size
k is set to 6 in all experiments.

3.3 Results

Tab. 1 depicts the quantitative results. In each cross-dataset experiment, we
include three classical vessel segmentation methods, UNet [15], LadderNet [31],
and LIOT [16] as baseline models. These methods are augmented with four TTT
methods, Tent [21], Cotta [23],Dplot [26] and L2CP for experimental comparison.
The table clearly demonstrates the consistent superiority of L2CP over others
in nearly all experimental settings. Utilizing three baseline models, the proposed
L2CP achieves average improvements of 1.9% (UNet), 1.9% (LadderNet) and
3.4% (LIOT) under six experimental settings. Specifically, the proposed method
achieves 3.4% increase in the F1 score compared to UNet for the generation
from CHASEDB1 dataset [4] to the DRIVE dataset [19]. When evaluating from
STARE [6] to the CHASEDB1 dataset [4], L2CP shows a remarkable 7.9% en-
hancement in the F1 score compared with LIOT. Some qualitative results are
shown in Fig. 3, where L2CP achieves accurate segmentation results.

3.4 Ablation studies

Impact of using different source domain images. We employ the notation
Expji to represent experiments involving the selection of distinct source domain
images, where i denotes the number of source domain images chosen for the
current experiment, and j represents the j − th random selection. Tab. 2 shows
the quantitative results using different source domain images. From the experi-
mental results, it is evident that the usage of different samples and quantities of
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Table 3: Evaluation of the proposed L2CP using different iteration rounds during
test-time training. 0 means the baseline result without test-time training.

Iteration 0 1 2 3 4 5 6 7 8

F1 0.729 0.771 0.776 0.774 0.772 0.771 0.772 0.770 0.769

Table 4: F1 score of generalizing results when using different method to generate
synthetic image.

Method Baseline Source Mix-up [28] Copy-Paste [5] Fourier [25] L2CP

F1 0.748 0.754 0.724 0.731 0.750 0.771

source domain images does not impact L2CP ’s generalization performance in
retinal blood vessel segmentation tasks. L2CP necessitates only one source do-
main image. All ablation studies are conducted from STARE dataset to DRIVE
dataset under LadderNet baseline.

Impact of number of iteration rounds. We conduct ablation experiments on
using different iteration rounds during testing. The experimental results in Tab. 3
indicate that the outcome after one single iteration closely approximates the
results obtained with multiple iterations, affirming the efficiency of our method.
All remaining experiments in this paper are consistently carried out with one
single iteration.

Impact of using different synthetic methods. To validate the efficacy of our
proposed method, we conduct ablation experiments using different techniques to
generate synthetic images. The results are presented in Tab. 4. Source denotes
results obtained by fine-tuning directly with source domain images. Mixup [28]
and Copy-paste [5] are two useful data augmentation technologies to generate
images. Fourier indicates results attained by training after replacing the low-
frequency components of the amplitude spectrum of target domain images with
those of source domain images [25]. As shown in Tab. 4, the comparison methods
show no enhancement of the baseline results, demonstrating the effectiveness of
employing L2CP-synthesized images for TTT.

4 Conclusion

In this paper, we propose a novel L2CP method in the Test-Time Training sce-
nario to generate synthetic images for domain generalization in retinal vessel
segmentation. Specifically, utilizing prior knowledge of the thin nature of ves-
sel structures, we leverage the morphological closing to effectively remove ves-
sels from the test images, forming the background component in the synthetic
image. Additionally, the proposed L2CP method alleviates the problem of the
large gap in both background and foreground grayscale distribution between the
source domain and the target domain, ensuring that vessels originating from the
source domain are realistically pasted onto the background component. L2CP
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necessitates the retention of a minimal number of source domain images. During
testing, a single step of network fine-tuning is adequate, rendering it an efficient
and highly effective approach for test-time training. The limitation of the cur-
rent framework is the requirement of one annotated source domain images. In
the future, we would like to use fractal methods [17] to synthesize vessel struc-
tures without relying on source-domain data within TTT framework. We will
also extend L2CP to other retinal conditions (e.g., diabetic retinopathy).
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