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Abstract. Vision language models (VLMs) show promise in medical
diagnosis, but their performance across demographic subgroups when
using in-context learning (ICL) remains poorly understood. We exam-
ine how the demographic composition of demonstration examples af-
fects VLM performance in two medical imaging tasks: skin lesion malig-
nancy prediction and pneumothorax detection from chest radiographs.
Our analysis reveals that ICL influences model predictions through mul-
tiple mechanisms: (1) ICL allows VLMs to learn subgroup-specific disease
base rates from prompts and (2) ICL leads VLMs to make predictions
that perform differently across demographic groups, even after control-
ling for subgroup-specific disease base rates. Our empirical results inform
best-practices for prompting current VLMs (specifically examining de-
mographic subgroup performance, and matching base rates of labels to
target distribution at a bulk level and within subgroups), while also sug-
gesting next steps for improving our theoretical understanding of these
models. https://github.com/Daneshjoulab/BiasICL
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1 Introduction and background

In-context learning (ICL), or the capacity of large language models (LLMs) to
adapt to new tasks from a handful of demonstrations in the prompt, has emerged
as an exciting development in AT [4]. For medical AT tasks, this technique circum-
vents the large datasets required for supervised learning, which are costly due to
privacy regulations and the clinical expertise required for data annotation. While
traditional deep learning often demands tens or hundreds of thousands of labeled
samples, ICL enables models to be rapidly customized to a new task using only
a few examples. Although first demonstrated predominantly in text-based medi-
cal tasks [I7], recent work has shown that ICL also improves the performance of
vision-language models (VLMs) for tasks such as cancer pathology image classi-
fication [8], chest radiograph classification, and dermatology image classification
3]
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Despite its promise, ICL remains imperfectly understood and can lead to
high variance in predictive accuracy based on seemingly minor modifications
in prompts. In text-only settings, prior research demonstrates that LLMs may
over-predict labels that appear more frequently in the prompt, appear last in
the prompt, or are simply more common in their pre-training data [26].

Prior to deployment in medical settings, VLM safety and bias need to be
better understood. Substantial work has been devoted to understanding whether
machine learning models have problems with demographic biases or fairness
issues. This includes work on previous generations of supervised deep learning
vision models [20], text-based large language models [I9], and now even vision-
based large multi-modal VLMs [22/21].

Our work differs from prior bias and fairness work in the following way —
we specifically aim to understand how prompting VLMs using ICL impacts de-
mographic fairness, as opposed to prior work that investigates text models or
investigates multi-modal models in the 0-shot setting. Consequently, we focus
on large, commercial API-based VLMs, with the capacity to handle interleaved
images and text with sufficiently large contexts to handle many demonstrations,
in line with prior work from Jiang et al. [I3].

This paper investigates how ICL with VLMs may inadvertently shift predic-
tive distributions in ways that influence demographic fairness. First, we demon-
strate that VLMs show a “majority label bias,” similar to what has been observed
in LLMs. Second, we find that VLMs exhibit a demographic group majority label
bias, indicating sensitivity to base rates not just overall but also within specific
demographic subgroups. This sensitivity seems to depend on how accurately the
models can identify the demographic subgroups. Finally, we show that even after
ensuring subgroup balance in prompts, ICL can increase the level of bias in pre-
dictions. Surprisingly, in this setting, ICL can lead to improvement in accuracy
of prediction of one subgroup directly to the detriment of accuracy in another.

2 Methods

2.1 Datasets

The Diverse Dermatology Images (DDI) dataset contains clinical images of skin
lesions with biopsy-proven benign or malignant labels and Fitzpatrick skin type
(FST) labels [5]. Following Daneshjou et al. [5], we focus on FST I-II (light
skin tones) and FST V-VI (dark skin tones), comprising 208 (159 benign, 49
malignant) and 207 (159 benign, 48 malignant) images, respectively (see Fig.
). We exclude FST III-TIV images to highlight performance across more distinct
skin tones. We split these into a 311-image demo set and a 104-image test set,
ensuring equal representation of FST I-II and V-VI and maintaining a balanced
25% malignancy rate in each group.

CheXpert is a large dataset of 224,316 chest radiographs from 65,240 patients,
with 14 labels automatically extracted from radiology reports [I1]. Because we
focus on demographic differences in prompt demonstrations, we limit our analysis
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Fig.1: Overview. CheXpert and DDI (a) were used to investigate a variety
of different biases, including: (b) Majority label bias, or the tendency of mod-
els to predict more prevalent labels in the prompt more frequently; (c) a new
bias introduced in our paper called group majority label bias, or the tendency of
models to be swayed by the majority label seen using ICL within a particular de-
mographic subgroup when encountering test examples from that same subgroup;
and (d) ICL bias, or the extent to which models learn disparities between groups
as the number of demos in a prompt increases. In (b-d), orange and blue bars
represent different demographic groups, and the height of each bar represents
the fraction of positive labels in the prompt within that subgroup.

to a small subset: 400 patients in a demo set and 100 in a test set, each split
evenly by sex. In each demographic subgroup (in both demo and test sets), half
the radiographs are labeled “pneumothorax,” and half are not (see Fig. [Lh).

2.2 Models

Our study focuses on API-based, commercial VLMs. We investigate three models
from three different providers: GPT-40 (with the specific endpoint “gpt-40-2024-
05-13"), Gemini 1.5 Pro (with the specific endpoint “gemini-1.5-pro-preview-
0409”), and Claude3.5-Sonnet (with the specific endpoint “claude-3-5-sonnet-
20241022”). We use the API service provided by OpenAl for GPT-4o, the API
service provided by Google Cloud on Vertex Al for Gemini 1.5 Pro, and the API
service provided by Anthropic for Claude3.5-Sonnet. We set the temperature to
zero for all models and a random seed for GPT-40 to obtain more deterministic
responses. These models were selected because they all have large contexts, high
accuracy across many multi-modal benchmark tasks, and most importantly, have
the capacity in their context to handle many interleaved images and texts.

2.3 Prompting and evaluation

LLMs and VLMs can be sensitive to prompting and evaluation strategies [3],
so we provide the exact prompts in our |GitHub. Following Jiang et al. [13], our
prompts include: (1) a preamble specifying response format; (2) demonstration
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examples (image, question, possible answers, correct answer); and (3) test im-
ages/questions. We also use Batch Querying [13], a method explored in a variety
of prior works that leads to more efficient and cheaper inference by batching
multiple test questions together in a single prompt.

To evaluate models, we parse answers from text completions because many
API-based models do not provide logprob access [I5/14]. When formatting issues
arose, we simply re-sent queries, as in Jiang et al. [I3], rather than using an LLM
fallback parser [15].

2.4 Bias measures

We considered three different types of bias when assessing in-context learning
(ICL). The first, majority label bias, first observed by Zhao et al. [26], mea-
sures how sensitive models are to the frequency of positive labels in the demon-
stration set (see Fig. ) Specifically, we measure how the average binary clas-
sification prediction made by the model (f(z)) over all images in the test set,
E(2)~Dioe: Lf ()], is impacted by varying the proportion of positive labels (y) in
the demonstrations in the prompt, E(, ,)wp,...,[¥]- We assess this bias since re-
cent work has suggested that newer models may be more robust to this bias
[10].

The second, which we termed group majority label bias, measures how
sensitive models are to the frequency of positive labels within each demographic
group in the demonstration set (see Fig. [Ig). Specifically, we measure how the
difference in the average prediction made by the model over all images in the
test set conditional on subgroup membership (E(, o, [f(z) | g(z) = 1] —
E(z,4)~Dree Lf (%) | g(x) = 0]) is impacted by varying the difference in the propor-
tion of positive labels between demographic groups in the prompt (E(g y)~p 400 [¥ |
g9(x) = 1] = Ez )by v | g(z) = 0]). Here, g(x) is an indicator function
evaluating as 1 when sample x belongs to a particular demographic group (0
otherwise).

Finally, to isolate the effects of number of demonstrations in the prompt, we
fix the base rate of positive labels in the prompt equal to the base rate in the test
set, and fix the base rates equal across both demographic subgroups. Then we
measure how the difference in the average prediction made by the model over all
images in the test set conditional on subgroup membership (E; ). [f(Z) |
9(x) = 1] = E(zy)~piee [f (%) | g(x) = 0]) is impacted by increasing the number
of demonstrations in the prompt. We refer to this as ICL bias (see Fig. [Id).
We also examined the difference in the predictive performance (measured by F1
score) between demographic groups as the number of prompt demonstrations
are increased.

3 Results

3.1 VLMs learn a majority label bias

When we prompted models with a constant number of demonstrations, but in-
creased the frequency of demonstrating examples with positive labels, we see
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that the models’ outputs become biased towards that prediction (see Fig. [2)).
While this relationship appears to mostly be nearly linear, we observe two out-
lier points in the CheXpert dataset in the two cases when all demonstrating
examples are positive. We also omitted Claude 3.5 Sonnet results on the CheX-
pert dataset in this experiment, as the model tended to abstain too frequently
to obtain reliable results.
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Fig. 2: Majority label bias — models more frequently predict labels that are more
frequent in the prompt. (a-c) Prediction of malignancy on the DDI dataset. (d-f)
Prediction of pneumothorax on the CheXpert dataset. Error bars = standard
error over three independent runs with different random seeds for selection of
demonstration examples from the dataset and ordering of demonstrations in the
prompts.

3.2 VLMs learn a demographic group majority label bias

After demonstrating that VLMs are sensitive to the overall base rate of label
frequency in their prompts, we wanted to investigate whether it is important
to pay attention to the base rate of different labels within different subgroups.
We refer to this property as a demographic group majority label bias. In Fig.
we hold the total number of samples in the prompt constant and increase
the difference between the base rate of positive labels in the two demographic
subgroups. Across most model-dataset pairs, we see that models do learn this
bias from the prompt. We notice that this effect is more pronounced in the
DDI dataset, where the maximum difference in subgroup mean prediction is
30% per model tested (Fig. —c), compared to the CheXpert dataset, where the
maximum difference is closer to 10% (Fig. [3k-g).
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Fig. 3: Demographic group majority label bias. (a~-c) Malignancy prediction on
DDI dataset; (e-g) Pneumothorax prediction on CheXpert. Error bars = stan-
dard error over three independent runs with different random seeds for demon-
stration selection and prompt ordering. (d) 0-shot accuracy for patient Fitz-
patrick skin type prediction from dermatology images; (h) maximum 0-to-50-
shot accuracy for patient sex prediction from chest radiographs.

We hypothesized that this might be due to differences in the ability of models
to detect and predict those demographic subgroups in the first place, particu-
larly as there has been extensive study of demographic biases in supervised deep
learning models for medical imaging, showing that these models can learn pa-
tient attributes such as race, sex, and age [23J9T6]. Across models tested, in
the 0-shot setting, models can highly accurately classify patients’ Fitzpatrick
skin type (see Fig ) We also investigate the ability of models to identify
demographic subgroups from chest radiographs, namely, patients’ sex. Because
predictive performance was low in the 0-shot setting, we increased the number
of demonstrating examples in this experiment up to 50, and plotted the max
accuracy per model over that range. We found that while models could predict
sex with greater-than-random accuracy (see Fig ), the accuracy was generally
much lower than for skin tone prediction.

Finally, given that previous work had demonstrated that supervised, deep
convolutional neural network models could predict patients’ self-reported race
from chest radiographs with very high accuracy [9], we also probed the ability of
VLMs to make this prediction. Despite substantial efforts to re-engineer prompts,
all three VLMs invariably refused to attempt to make this classification.

These findings suggest that VLMSs are less capable of identifying demographic
subgroup identities than previous generations of supervised deep learning mod-
els, and also that as their capability in this area grows, their susceptibility to this
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particular group majority label bias will increase as well. This is in keeping with
prior work suggesting that supervised learning models may have a tendency to
use demographic groups as “shortcuts” or proxies in their predictions [224J6/12].

3.3 ICL alone can increase demographic subgroup bias in VLMs
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Fig.4: The impact of ICL on the difference between models’ average predictions

across subgroups when the base rate of positive labels is set equal between sub-

groups in the prompt.

We initially hypothesized that adding demos from patients across different
demographic subgroups to the prompt with ICL might be able to decrease mod-
els” inherent bias. This was because prior work on supervised learning models
had shown that fine-tuning using more diverse data could improve subgroup
performance [5]. However, our analysis showed that this was not necessarily the
case.

For the task of malignant skin lesion prediction on the DDI dataset, GPT-40
demonstrated minimal bias in its predictions across demographic subgroups in
the 0-shot setting. However, when provided with additional in-context examples,
even those with balanced malignancy rates, the model developed a systematic
bias toward predicting higher malignancy rates in patients with Fitzpatrick Skin
Types V/VI (roughly 10%, see Fig. 4l left). In contrast, Gemini 1.5 Pro exhibited
strong 0-shot bias toward predicting malignancy in FST V/VI patients (around
20%), and while this bias persisted with the addition of balanced in-context
examples, it showed modest attenuation. The models’ behavior differed substan-
tially in the CheXpert pneumothorax prediction task (see Fig. [4] right). Both
GPT-40 and Gemini 1.5 Pro maintained relatively unbiased predictions across
gender, independent of number of demonstrating examples. Claude 3.5 Sonnet
results were again excluded from this experiment as refusals were too numerous
to have a reliable sample size.

In addition to considering bias in terms of the difference in average predictions
between groups, we also looked at the predictive performance of models across
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Fig.5: The impact of ICL on GPT-40’s predictive performance on the DDI

dataset when (a) adding only FST V/VI demos, (b) adding only FST I/II de-
mos, and (¢) adding equal numbers of both.

subgroups. Our most interesting results were on the DDI dataset with the GPT-
40 model (see Fig. [5)). In this experiment, the base rate of malignancy in the
prompt was fixed equal to the base rate of malignancy in the test set, and the
number of demonstrating examples were increased. Independently of whether
the demonstrating examples in the prompt were (a) all of skin type FST V/VI,
(b) all of skin type FST I/II, or (c) even numbers of both both, ICL significantly
increased the predictive performance (as measured by F1 score) for FSV V/VI
patients at the expense of predictive performance for FST I/II patients.

4 Discussion and limitations

This empirical work has several immediately-relevant implications for prompt-
ing. For medical vision systems that are task-adapted using ICL, developers
must consider not only the overall base rate of the labels in the prompt, but
also the demographic subgroup-specific base rate of the labels in the prompt.
Additionally, even after carefully controlling the base rates of labels per demo-
graphic subgroups in prompts, ICL can still lead to exacerbation of differences in
predictions across demographic subgroups. This highlights the ongoing impor-
tance of lessons learned from the supervised learning era — hidden stratification,
or the tendency of models to have poor performance on important subsets of a
population [I§], is still a relevant property of VLMs “trained” with ICL. Con-
sequently, developers should evaluate their models’ performance stratified on
different relevant subgroups.

Limitations of our current work also suggest future directions for research.
While our work shows that ICL with large state-of-the-art API-based models
can lead to exacerbated bias between subgroups, it does not uncover the mecha-
nism of why this occurs. Future work with open source models [I], for which the
weights and pre-training data can be directly accessed, will allow us to run abla-
tion experiments to determine what aspects of a models training corpus, training
process, and architecture primarily contribute to the observed phenomena. We
also acknowledge the limitations of our work in evaluating the full social /societal
impacts of the fairness of these models. We measure bias between subgroups as a
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quantifiable and mathematical property of these models and datasets. However,
a full analysis of the impact of these models would require further investigation of
the real sociotechnical contexts in which they might be used [7]. Finally, various
improvements to the basic ICL scheme, in particular regarding output calibra-
tion, have also been proposed [27I25]28]; further adaptations of these works as
possible solutions to the biases observed here will likely represent useful future
work.
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