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Abstract. Unsupervised anomaly detection (UAD) in medical imaging
is crucial for identifying pathological abnormalities without requiring ex-
tensive labeled data. However, existing diffusion-based UAD models rely
solely on imaging features, limiting their ability to distinguish between
normal anatomical variations and pathological anomalies. To address
this, we propose Diff3M, a multi-modal diffusion-based framework that
integrates chest X-rays and structured Electronic Health Records (EHRs)
for enhanced anomaly detection. Specifically, we introduce a novel Image-
EHR Cross-Attention module to incorporate structured clinical context
into the image generation process, improving the model’s ability to dif-
ferentiate normal from abnormal features. Additionally, we develop a
static masking strategy to enhance the reconstruction of normal-like im-
ages from anomalies. Extensive evaluations on CheXpert and MIMIC-
CXR/IV demonstrate that Diff3M achieves state-of-the-art performance,
outperforming existing UAD methods in medical imaging. Our imple-
mentation is available at https://github.com/nth221 /Diff3M.
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1 Introduction

Recent AT advancements have remarkably improved radiographic image analysis,
providing crucial diagnostic support to radiologists [7,9,19]. However, current
clinical practices rely on Al tools designed for predefined disease predictions [21].
This reliance raises the risk of overlooking clinically significant but previously
uncharacterized pathological features. To overcome this limitation, unsupervised
anomaly detection (UAD) offers a promising direction, with the capability to
identify undefined pathological features without prior annotation [2].
Generative model-based anomaly detection has gained interest in recent years
[1,25], distinguishing anomalies by regenerating input data into anatomically
plausible representations [26,25]. Among these approaches, diffusion-based mod-
els excel in industrial domains, due to their powerful generation capabilities
[11,20]. These models extract semantic features characterizing normal data and
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use them as a reference to reconstruct the input into a normal-like image. How-
ever, the variability in individual anatomical structures within radiographic im-
ages complicates the extraction of features that manifest normal data, making
it difficult to enhance detection performance [3].

To address this challenge, we propose a Diffusion-based Multi-modal Medical
Anomaly Detection (Diff3M) framework that leverages both chest X-rays and
structured Electronic Health Records (EHRs) for enhanced anomaly detection.
While previous studies show that integrating EHR data with medical images
enhances clinical prediction [30,32], its potential in anomaly detection remains
largely unexplored. To bridge this gap, we introduce a novel Image-EHR, Cross-
Attention (IECA) mechanism that allows EHR data to provide additional se-
mantic context, enabling the model to differentiate between normal anatomical
variations and pathological anomalies. This mitigates the impact of anatom-
ical variability in the generation process, resulting in more reliable anomaly
detection. Additionally, we propose a novel masking strategy for reconstructing
anatomically normal-appearing images. Existing diffusion-based anomaly detec-
tion methods primarily employ random masking with predefined textures [13,31],
which lacks generalizability. In contrast, we introduce a Pixel-level Checkerboard
Masking (PCM) module, designed to capture a broader range of anomalies by
incorporating static masking patterns that generalize beyond specific textures.
Throughout the reverse diffusion process, Diff3M reconstructs masked regions
into normal-like images by leveraging both the noised input and EHR-guided
semantic embeddings, enhancing its ability to detect and characterize anomalies
effectively.

We conduct comprehensive experiments using two major chest radiography
datasets, CheXpert [14] and MIMIC-CXR/IV [16,15], both offering rich collec-
tions of chest X-rays paired with clinical information. Our evaluation, combining
quantitative metrics and qualitative analysis, shows that the proposed method
outperforms existing UAD approaches for medical images. The contributions of
this paper can be summarized as follows:

1. The first diffusion-based medical anomaly detection framework that effec-
tively integrates EHR data as conditioning.

2. A novel Image-EHR Cross-Attention module to generate EHR embeddings
that incorporate structured clinical information into the detection pipeline.

3. A new static masking strategy to enhance the reconstruction of normal-like
images from anomalies.

4. State-of-the-art performance in medical UAD, surpassing existing methods.

2 Background

Diffusion-based UAD Diffusion-based models reconstruct anomalies into nor-
mal-like images. AnoDDPM [29] improves normal-like image generation using
Simplex noise [22] but underperforms compared to standard denoising autoen-
coders [6]. mDDPM [13] applies random masking but targets specific anomalies
rather than undefined abnormalities. DDAD [20] and the more recent DiAD [11]
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condition the reverse process on extracted image features, which may mix nor-
mal and anomalous traits, leading to generalization issues.

Feature-based UAD Feature-based UAD methods detect anomalies by analyz-
ing features extracted from pre-trained foundation models [2]. PaDiM, CFA and
PatchCore [1,18,24] use memory bank to compare features from normal train-
ing and testing data, while RD4AD [5] and MambaAD [10] employ knowledge
distillation to detect anomalies by measuring discrepancies between teacher and
student networks. However, the general-purpose foundation models may struggle
to extract meaningful medical features.

Diffusion Models The Denoising Diffusion Probabilistic Model (DDPM) [12]
consists of two main processes: a forward process ¢(-) and a reverse process
po(+). The forward process gradually adds Gaussian noise to input data x over
T steps, mapping it to a standard normal distribution. Each step ¢ (t = 1,...,T)
introduces noise €*) ~ N(0,1), scaled by a variance parameter 3, € (0, 1) like
q(x¢|x¢—1) = N(x¢;/1 = Bixi—1, 5:I). The reverse process is a learnable pro-
cedure that reconstructs data from xp to generate sample xy resembling the
training data. It is trained by minimizing the KL divergence of q(x;—1|x¢, X0)
and pg(x;—1|x¢). It can be interpreted as approximating each step of the reverse
process as the inverse operation of the corresponding forward process step. Con-
sequently, the model learns to predict the noise ¢ using £ := Heét)(xt) —e®)3.

The Denoising Diffusion Implicit Model (DDIM) [27] enhances DDPM effi-
ciency by reformulating the forward process with a reversed ordinary differential
equation (ODE), making it deterministic and non-Markovian [

Xi41 = X¢ + 1/ 0q1 [(\/ —4/ >Xt+<” —1—“ —l—l) (t)
Qi Qg Qi

where oy := HS: (1 — Bs). Since the processes are no longer Markovian, DDIM
enables sample generation with fewer steps than T'. The method proposed in this
paper is built upon DDIM.

3 Proposed Framework

We present Diff3M, a diffusion-based UAD framework trained exclusively on
normal data (Fig. 1). It comprises two key steps: (1) a Noise Prediction (NP)
Network for estimating noise 6((;) in the reverse diffusion process and (2) a Masked
Pizel Generation (MPG) Network for reconstructing masked inputs into anatom-
ically plausible images x;. To effectively integrate EHRs for enhanced anomaly
detection, we propose two key designs. First, we introduce a novel Image-EHR
Cross Attention (IECA) module, which extracts EHR embeddings from paired
X-ray images x and EHR data r, conditioning the MPG Network and the NP
Network (Sec. 3.1). This enables a more semantically informed diffusion pro-
cess. Additionally, following the original DDPM framework [12], we incorporate
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Fig. 1. Training process of Diff3M. Image-EHR Cross Attention (IECA) incorporates
EHR embeddings as conditional inputs for the noise prediction (NP) network at each
reverse process step. A novel Pixel-level Checkerboard Masking (PCM) strategy is em-
ployed to improve generating masked inputs into normal-like images from the Masked
Pixel Generation (MPG) Network.

timestamp embeddings to capture temporal information. Second, we propose
a Pizel-level Checkerboard Masking (PCM) strategy to enhance image recon-
struction by generating masked inputs from x;, which the MPG Network then
reconstructs into normal-appearing images (Sec. 3.2).

3.1 Image-EHR Cross Attention (IECA)

Existing diffusion-based models [11,20] extract normal semantic features solely
from input images, potentially incorporating anatomical anomalies. To mitigate
this, we propose an Image-EHR, Cross Attention (IECA) module to derive an
embedding that represents the X-ray image through EHR data, reducing the
influence of anomalous features. As shown in Fig. 2-(a), we first use a feature
tokenizer [3] to generate EHR embeddings, producing f tokens based on tabular
features. The generated tokens F' € R/*¢ are then used to compute token-wise
weights w,. based on their similarity to the input image embedding e. The final
conditional embedding c, is then obtained as a weighted sum of F":

F = FeatureTokenizer(r), re R (D [ cRf*4

(2)
¢ =W, F, W, = 0sortmar((Fel)/Vd), e=Encoder(x), ecRX?

Since the generated conditional embedding c,. is based on the similarity with e,
it implicitly encodes the EHRs information to align with the semantic features
of the input image. c, is then used as a conditional input for MPG and NP to
provide normal semantic features for the input image.

3.2 Pixel-level Checkerboard Masking (PCM)

Existing masking-based methods apply random masking with specific textures
to simulate predefined target anomalies, training models to reconstruct the sim-
ulated patterns into anatomically acceptable shapes [13,31]. However, such ap-
proaches often struggle to detect real pathological abnormalities that deviate
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Fig. 2. Details of the proposed modules. (a) The Image-EHR Cross Attention mod-
ule incorporate structured clinical context into the image generation process. (b) The
Pixel-level Checkerboard Masking module facilitates the regeneration of anomalies into
normal-like images using two types of static masks.

from predefined patterns. To avoid reliance on specific anomaly patterns and
encourage the model to depend on auxiliary information—specifically, the EHR
conditional embedding from IECA, we employ static masking that deliberately
obscures image regions. This approach enables the detection of a broader range
of anomalies beyond those seen in the training data.

As illustrated in Fig. 2-(b), PCM consists of two complementary checkerboard
masks (M1, M?) of input image size. A scale parameter s adjusts masking in-
tensity by time step ¢ to prevent later losses affecting earlier steps. At time step
t, applying M! and M? to noised input x; yields x*! and x"2. To obtain the
final prediction, we apply the opposite mask to each reconstructed image. The
formulation is as follows:

M!; =(i+j)mod?2, M7 =1—(i+j)mod?2,

MY (M2 x (1—s)+s), s=t/T, (3)
%, = MPG(x{"") ® M? + MPG(x]"*) @ M*, x"' x"* =x, & M2

The regenerated X; is used for loss function during training and for generating
the previous step image x;_1 during detection.

Training and Detection To train the noise prediction capability of the NP
Network and the masked image reconstruction capability of the MPG Network,
we compute the mean squared error (MSE) between output of each network (e((,t)

%;) and its corresponding target (¢, x;) as follows:

)

Longan = B, |Me” = 3+ (1= Vlie —x3] (4)

where A € (0, 1) is a weighting factor. For more eflicient training, the base DDPM
and IECA module can be pre-trained on X-ray images and EHR data (Fig. 1).

Algorithm 1 outlines the Diff3M detection process. Using the DDIM sampling
strategy, the forward process introduces noise into the image up to 77 (7" < T)
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steps. During the reverse process, the model generates x;_; using produced noise
e((f) and image X; following [28]. The final anomaly score measures the difference
between the reconstructed image xo and the original input x. Samples with high

anomaly scores are flagged as potential anomalies.

Algorithm 1 Anomaly detection using Diff3M

1: Input: input image x, EHRs r, timestamp ¢, noise level T’
2: Output: image-level anomaly score a
3: for all t from 0 to 7" — 1 do
4: Xi41 & Xt + /41 |:<1/6% —,/&til)xt+ (1/&:_*_1 —1- 1/6% _1) egt)i|
5: end for
6: ¢, < IECA(r,x)
7: for all ¢t from 7" to 1 do
8: temp < TimestampEmbedding(t)
9: it < MPG(X;nl,X?ﬂ, Cr,temb)a (X’tmlvxqth) — PCM(Xt)

Xt—V1—a& e(t)
10 X1 /@1 (’IT’G) +vVI—ar ey, € NP(xi, ¢, tems)
11: end for N N
12: a « dlff(X7 X0)7 diff(X,XO) € {HX - XOH%, maiX|XZJ - XE)’J|}

i,j

13: return a

4 Experiments and Results

Datasets and Evaluation Metrics CheXpert [14] and MIMIC-CXR [15] both
contain X-ray images, the same types of demographic information, and 12 disease
classes. We define normal samples as cases with No Finding, while all other cases
are considered anomalies. For demographic features, we use sex, age, and AP /PA
view. In MIMIC-CXR, we further incorporate BMI, blood pressure, height, and
weight from MIMIC-IV [17] as additional EHR features, selecting records within
three months of the X-ray imaging date. CheXpert has 16,969 normal samples for
training, and (26,/176) (normal/anomaly) samples for testing. MIMIC has 29,310
normal samples for training, and (487,/1646) (normal/anomaly) samples for test-
ing. We evaluate image-level anomaly detection using AUROC and AUPRC to
compare performance across various detection thresholds.

Implementation Details Diff3M is trained using 8 Nvidia RTX A5000 GPUs.
All images are resized to 256 x256. IKCA, MPG, and NP adopt the UNet-based
architecture from [28]. We use Adam optimizer with a maximum time step T
of 1,000, a batch size of 3, a weighting factor A of 0.5 and a learning rate of
10~%. For Chexpert, the model is trained from scratch for 60,000 iterations.
For MIMIC, the model is pre-trained on CheXpert, and fine-tuned with EHRs
for 70,000 iterations. During inference, DDIM sampling is applied with 600/400
steps for CheXpert/MIMIC.
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Table 1. Performance comparison on CheXpert and MIMIC datasets. demo: demo-
graphics information for IECA. ehr: additional EHRs from MIMIC-IV for IECA.

Dataset I M etric | Feature-based | Diffusion-based
| | PatchCore RD4AD MambaAD | DiAD Oursgemo OurSgemo,ehr
AUROC 0.584 0.529 0.594 0.664 0.664 -
CheXpert ‘ AUPRC| 0888  0.719 0889 | 0917 0.931 -
MIMIC  |AUROC| 0573 0555 0570 | 0597 0610 0.617
AUPRC 0.796 0.800 0.779 0.803 0.818 0.821
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Fig. 3. Qualitative comparison. Red circles indicate anomalous artifacts.

4.1 Performance Comparison

We compare Diff3M with state-of-the-art (SOTA) feature-based models, e.g.,
PatchCore [24], RD4AD [5], and MambaAD [10], along with the diffusion-based
model DiAD [11]. For qualitative evaluation, we compare the anomaly maps,
computed as the absolute pixel-level difference between the input and output.

Quantitative and Qualitative Results As shown in Table 1, Diff3M achieves
SOTA performance in image-level anomaly detection for both CheXpert and
MIMIC. For MIMIC, Diff3M improves AUROC by approximately 2.0-5.5% over
previous approaches. This highlights the importance of effectively leveraging
EHR data to enhance anomaly detection. For CheXpert, the performance of
Diff3M using only demographics-based EHRs is comparable to DiAD. This sug-
gests that demographic information alone may not fully capture anatomical vari-
ations. Overall, diffusion-based approaches outperform feature-based methods,
likely because foundation models struggle to extract effective features in the
medical domain, as discussed in Sec. 2.

Fig. 3 compares the anomaly regeneration capability of DDPM and Diff3M.
We examine an abnormal image containing statistically anomalous artifacts. Un-
like DDPM, Diff3M successfully transforms anomalous artifacts into normal-like
structures for each region, assigning significantly higher anomaly scores com-
pared to surrounding areas. These results demonstrate that Diff3M effectively
generates anomaly maps, which can serve as a valuable medical assistive tool.
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Table 2. Ablation study on the modules of Diff3M (MSE/maxaps)-

Dataset | Metric | DDPM DDPM+PCM  Oursgemo  Oursgemo,ehr

AUROC | 0.500/0.500  0.553/0.640 0.547/0.664 -
AUPRC | 0.838/0.867 0.902/0.922 0.899/0.931 -

MIMIC AUROC|0.562/0.551 0.592/0.562  0.610/0.567 0.617,/0.568
AUPRC | 0.800/0.791 0.807/0.793  0.818/0.799 0.821/0.798

CheXpert

Table 3. Analysis of attention weights for each input feature (meanztstd). entire:
analysis across entire samples. topigy: analysis for the top 10% of feature values.

input feature f | BMI |  BPnaz BPin Height Weight

mean ‘ entire ‘ 0.262+0.117 ‘ 0.183+0.043 ‘ 0.116+£0.037 ‘ 0.210+0.040 ‘ 0.230+0.038
f

Wi | lopros | 0.475£0.033 | 0.1240.022 | 0.081£0.024 | 0.145+0.021 | 0.174-£0.013

4.2 Ablation Study

Table 2 shows that adding PCM and IECA sequentially improves performance
on both datasets. This demonstrates that each module contributes to anomaly
detection and that their combination further enhances performance. We also
compare the performance of MSE and pixel-level maximum absolute difference
(mazaps) as anomaly scoring methods. The results show that MSE is more effec-
tive for MIMIC, whereas maxqps performs better for CheXpert. To understand
this discrepancy, we analyze anomaly detection performance for individual dis-
ease classes. In MIMIC, switching to maz s leads to a 12.3-19.9% performance
drop for Fracture and Pleural Other cases. Conversely, in CheXpert, the num-
ber of positive samples for these classes is extremely low (0-1), which explains
why using mazx.ps does not negatively impact performance. These findings sug-
gest that different scoring functions may be more suitable for different diseases.
Therefore, when using the anomaly detection models as a medical assistive tool,
it may be necessary to review anomalies based on different scoring functions.

Effects of EHRs Table 3 presents the mean of attention weights (w,.) assigned
to each IECA input feature f in the MIMIC test dataset. Among the EHR fea-
tures, BMI has the highest average weight. In particular, for the top 10% of
samples, BMI accounts for 47.5%, indicating a significantly dominant contribu-
tion. This suggests that BMI is the most representative feature for capturing the
anatomical characteristics of input images. Unlike height and weight, which in-
dependently provide limited information about body shape, BMI (calculated as
weight /height?) offers a more meaningful approximation of body shape. These
findings demonstrate that IECA effectively combines EHR features, extracting
conditional embeddings that reflect anatomical information. In the case of de-
mographic features, most of the weights converged to zero. These results suggest
that utilizing richer EHR features is crucial for robust anomaly detection.
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5 Conclusion

This paper proposes Diff3M, a novel framework that leverages EHR data for
enhancing medical anomaly detection. By integrating EHR data through Image-
EHR Cross Attention (IECA) and enforcing structured feature learning with
Pixel-level Checkerboard Masking (PCM), Diff3M counsistently outperforms ex-
isting diffusion-based and feature-based methods on CheXpert and MIMIC datas-
ets. In the future work, we will apply lightweight models such as latent diffusion
[23] to analyze the trade-off between detection performance and efficiency result-
ing from structural shifts in the model. In addition, we will explore incorporating
richer clinical data to further enhance its diagnostic support capabilities.

Acknowledgments. This research was supported by the MSIT (Ministry of Science,
ICT), Korea, under the Global Research Support Program in the Digital Field program
(RS-2024-00431394) supervised by the IITP (Institute for Information & Communica-
tions Technology Planning & Evaluation).

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.

References

1. Akcay, S., Atapour-Abarghouei, A., Breckon, T.P.: Ganomaly: Semi-supervised
anomaly detection via adversarial training. In: Computer Vision—-ACCV 2018: 14th
Asian Conference on Computer Vision, Perth, Australia, December 2—6, 2018, Re-
vised Selected Papers, Part III 14. pp. 622-637. Springer (2019)

2. Bao, J., Sun, H., Deng, H., He, Y., Zhang, Z., Li, X.: Bmad: Benchmarks for medical
anomaly detection. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. pp. 4042-4053 (2024)

3. Bercea, C.I., Wiestler, B., Rueckert, D., Schnabel, J.A.: Diffusion models with
implicit guidance for medical anomaly detection. In: International Conference
on Medical Image Computing and Computer-Assisted Intervention. pp. 211-220.
Springer (2024)

4. Defard, T., Setkov, A., Loesch, A., Audigier, R.: Padim: a patch distribution model-
ing framework for anomaly detection and localization. In: International conference
on pattern recognition. pp. 475-489. Springer (2021)

5. Deng, H., Li, X.: Anomaly detection via reverse distillation from one-class embed-
ding. In: Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition. pp. 9737-9746 (2022)

6. Fan, Y., Liao, H., Huang, S., Luo, Y., Fu, H., Qi, H.: A survey of emerging appli-
cations of diffusion probabilistic models in mri. Meta-Radiology p. 100082 (2024)

7. Feng, X., Huang, Q., Li, X.: Ultrasound image de-speckling by a hybrid deep
network with transferred filtering and structural prior. Neurocomputing 414, 346—
355 (2020)

8. Gorishniy, Y., Rubachev, 1., Khrulkov, V., Babenko, A.: Revisiting deep learning
models for tabular data. Advances in Neural Information Processing Systems 34,
18932-18943 (2021)



10

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Kim et al.

Han, Z., Wang, Y., Zhou, L., Wang, P., Yan, B., Zhou, J., Wang, Y., Shen, D.:
Contrastive diffusion model with auxiliary guidance for coarse-to-fine pet recon-
struction. In: International conference on medical image computing and computer-
assisted intervention. pp. 239-249. Springer (2023)

He, H., Bai, Y., Zhang, J., He, Q., Chen, H., Gan, Z., Wang, C., Li, X., Tian,
G., Xie, L.: Mambaad: Exploring state space models for multi-class unsupervised
anomaly detection. arXiv preprint arXiv:2404.06564 (2024)

He, H., Zhang, J., Chen, H., Chen, X., Li, Z., Chen, X., Wang, Y., Wang, C., Xie,
L.: A diffusion-based framework for multi-class anomaly detection. In: Proceedings
of the AAAT Conference on Artificial Intelligence. vol. 38, pp. 8472-8480 (2024)
Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. Advances in
neural information processing systems 33, 6840-6851 (2020)

Igbal, H., Khalid, U., Chen, C., Hua, J.: Unsupervised anomaly detection in med-
ical images using masked diffusion model. In: International Workshop on Machine
Learning in Medical Imaging. pp. 372-381. Springer (2023)

Irvin, J., Rajpurkar, P., Ko, M., Yu, Y., Ciurea-Ilcus, S., Chute, C., Marklund, H.,
Haghgoo, B., Ball, R., Shpanskaya, K., et al.: Chexpert: A large chest radiograph
dataset with uncertainty labels and expert comparison. In: Proceedings of the
AAAI conference on artificial intelligence. vol. 33, pp. 590-597 (2019)

Johnson, A., Bulgarelli, L., Pollard, T., Gow, B., Moody, B., Horng, S., Celi, L.,
Mark, R.: Mimic-iv (version 3.1). physionet (2024)

Johnson, A., Pollard, T., Mark, R., Berkowitz, S., Horng, S.: Mimic-cxr database
(version 2.0. 0). physionet 2, 5 (2019)

Johnson, A., Bulgarelli, L., Pollard, T., Horng, S., Celi, L.A., Mark,
R.:  Mimic-iv.  PhysioNet.  Available online at:  https://physionet.
org/content/mimiciv/1.0/(accessed August 23, 2021) pp. 49-55 (2020)

Lee, S., Lee, S., Song, B.C.: Cfa: Coupled-hypersphere-based feature adaptation
for target-oriented anomaly localization. IEEE Access 10, 78446-78454 (2022)
Mao, J., Wang, Y., Tang, Y., Xu, D., Wang, K., Yang, Y., Zhou, Z., Zhou, Y.: Med-
segfactory: Text-guided generation of medical image-mask pairs. arXiv preprint
arXiv:2504.06897 (2025)

Mousakhan, A., Brox, T., Tayyub, J.: Anomaly detection with conditioned denois-
ing diffusion models. arXiv preprint arXiv:2305.15956 (2023)

Obuchowicz, R., Lasek, J., Wodzinski, M., Piérkowski, A., Strzelecki, M., Nurzyn-
ska, K.: Artificial intelligence-empowered radiology—current status and critical
review. Diagnostics 15(3), 282 (2025)

Perlin, K.: Improving noise. In: Proceedings of the 29th annual conference on Com-
puter graphics and interactive techniques. pp. 681-682 (2002)

Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.: High-resolution
image synthesis with latent diffusion models. In: Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition. pp. 10684-10695 (2022)
Roth, K., Pemula, L., Zepeda, J., Scholkopf, B., Brox, T., Gehler, P.: Towards
total recall in industrial anomaly detection. In: Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition. pp. 14318-14328 (2022)
Schlegl, T., Seebock, P., Waldstein, S.M., Langs, G., Schmidt-Erfurth, U.: f-anogan:
Fast unsupervised anomaly detection with generative adversarial networks. Medical
image analysis 54, 30-44 (2019)

Schlegl, T., Seebock, P., Waldstein, S.M., Schmidt-Erfurth, U., Langs, G.: Unsu-
pervised anomaly detection with generative adversarial networks to guide marker
discovery. In: International conference on information processing in medical imag-
ing. pp. 146-157. Springer (2017)



27.

28.

29.

30.

31.

32.

Harnessing EHRs for Diffusion-based Anomaly Detection on Chest X-rays 11

Song, J., Meng, C., Ermon, S.: Denoising diffusion implicit models. arXiv preprint
arXiv:2010.02502 (2020)

Wolleb, J., Bieder, F., Sandkiihler, R., Cattin, P.C.: Diffusion models for medical
anomaly detection. In: International Conference on Medical image computing and
computer-assisted intervention. pp. 35-45. Springer (2022)

Wyatt, J., Leach, A., Schmon, S.M., Willcocks, C.G.: Anoddpm: Anomaly detec-
tion with denoising diffusion probabilistic models using simplex noise. In: Proceed-
ings of the IEEE/CVF conference on computer vision and pattern recognition. pp.
650-656 (2022)

Yao, W., Yin, K., Cheung, W.K., Liu, J., Qin, J.: Drfuse: Learning disentangled
representation for clinical multi-modal fusion with missing modality and modal
inconsistency. In: Proceedings of the AAAI conference on artificial intelligence.
vol. 38, pp. 16416-16424 (2024)

Zhang, X., Li, N., Li, J., Dai, T., Jiang, Y., Xia, S.T.: Unsupervised surface anomaly
detection with diffusion probabilistic model. In: Proceedings of the IEEE/CVF
International Conference on Computer Vision. pp. 6782-6791 (2023)

Zhou, Y., Huang, S.C., Fries, J.A., Youssef, A., Amrhein, T.J., Chang, M., Baner-
jee, L., Rubin, D., Xing, L., Shah, N., et al.: Radfusion: Benchmarking performance
and fairness for multimodal pulmonary embolism detection from ct and ehr. arXiv
preprint arXiv:2111.11665 (2021)



	Harnessing EHRs for Diffusion-based Anomaly Detection on Chest X-rays

