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Abstract. Mandibular reconstruction is crucial after oral tumor resec-
tion, yet current methods rely on premorbid geometric approximations
and struggle with achieving reliable donor-native bone union. We propose
a Bayesian optimization framework that enhances predicted bone union
likelihood and facilitates computer-aided intervention by systematically
varying key surgical parameters—resection plane orientation, donor bone
positioning, and graft length—across three mandibular regions. Recon-
struction performance is evaluated using two cost functions, coupled with
a sensitivity analysis on modeling parameters. We validated the model
using longitudinal patient-specific data from 5-day and 1-year postopera-
tive CT and MRI scans. Our results show that optimization significantly
enhances the predicted likelihood of bone union, with a relative improve-
ment of up to 329% compared to the standard surgical practice. Addi-
tionally, validation shows a Dice coefficient of up to 0.76 between union
prediction and actual postoperative imaging data. This study suggests
that modifying the standard surgical plan can significantly improve bone
union, underscoring the need for advanced optimization frameworks in
surgical planning. The open-source code is available on GitHub.

Keywords: Mandibular Reconstruction Surgery · Optimization · Computer-
Assisted Intervention · Computational Modeling

1 Introduction

The incidence of oral cancer has risen significantly in recent years. The Amer-
ican Cancer Society estimates that about 59,660 new cases of oral cavity and
oropharyngeal cancer will be diagnosed in the U.S. in 2025 [1]. Many cases in-
volve the mandible, necessitating resection and reconstruction to restore the
jaw’s contour and function [2]. Autologous bone grafting, primarily using fibula
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or scapula grafts, is the gold standard for mandibular reconstruction [3]. How-
ever, nonunion at the graft-host interface remains a major challenge [4,5], with
rates reaching up to 37% [4]. Such complications can cause pain, functional im-
pairment, and, in severe cases, necessitate revision surgery.

Several studies have assessed the likelihood of bone union in mandibular
reconstruction using simulations based on established bone remodeling algo-
rithm [6,7,8,9]. While clinically evaluated in specific scenarios such as denture
fixation [9] or mandibular reconstruction [6,7,8], these studies have some lim-
itations. Existing methods lack automated design optimization for predicting
bone union—typically focusing on implants or plates [10] while neglecting bone
graft structure. In contrast to hardware modifications, which may lead to com-
plications such as fracture or exposure [11], adjusting bone shape offers greater
surgical flexibility. These studies also use simplified biomechanical models of
the temporomandibular joint (TMJ) [12], muscle [3], and bone-to-bone contact,
relying on static rather than dynamic simulations.

Building on prior works [13,14], (i) We develop a Bayesian optimization
framework that enhances predicted bone union by efficiently exploring key design
parameters. Integrating medical imaging and dynamic simulation, our method
supports next-generation computer-aided intervention for personalized surgical
planning that optimizes functional parameters beyond conventional geometry
replication [15]. The open-source code is available on GitHub. (ii) We optimize
three key but less explored parameters—resection plane orientation, donor verti-
cal offset, and donor bone length—evaluating them across three mandibular de-
fect types with two optimization cost functions. Robustness is assessed through
sensitivity analysis. We hypothesize that our automated optimization can sig-
nificantly improve bone union likelihood. (iii) Finally, we validate the model by
comparing its predictions with longitudinal patient-specific imaging data.

2 Methods and Materials

2.1 Workflow

Our workflow (Fig.1) comprises three automated steps—Virtual Planning, Mesh
Refinement, and Physics-based Simulation—integrated into the optimization
process. The core implementation is in MATLAB, integrating external tools.

Virtual Planning: We used the ArtiSynth API [16] to reconstruct three
defect cases based on Urken’s Classification [17]. Using imaging data from [13],
we generated three synthetic defects: body (B), symphysis (S), and ramus-body
(RB). Surgeons define the resection plane positions based on defect type, while
other angular and length-based variables are optimized through the program de-
scribed in Sec. 2.2. The number and position of donor segments are determined
using the Ramer-Douglas-Peucker (RDP) algorithm [18], which approximates
the mandible’s contour using straight-line segments. One segment is used to
reconstruct B and S defects, while RB defects require two segments; however,
the framework generalizes to any number of segments. RDP point offset con-
trols the position of the intermediate cut between the two donor segments along
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Bayesian Optimization

I.  Virtual Planning II.  Mesh Refinement III.  Simulation
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Fig. 1: The Bayesian optimization workflow includes virtual planning, mesh re-
finement, and simulation (RB baseline example with optimization parameters).

the mandible’s curvature. To increase bony contact, a brute-force search is per-
formed, analyzing overlapping planar polygons from resection and donor meshes
to maximize apposition. Finally, a coarse finite element (FE) plate deforms to
match the mandibular shape via axial springs in a forward simulation.

Mesh Refinement: We used PYMeshLab API [19] to refine the mesh be-
fore physics-based simulations. A mesh sensitivity analysis on maximum prin-
cipal stress (MPS) determined the optimal edge length, stopping when changes
fell below 5% to balance computational cost and accuracy. The process applies
isotropic explicit remeshing to key anatomical structures with a target edge
length of 0.50 mm, 50 refinement iterations. Additional steps merge close ver-
tices, snap mismatched borders, remove duplicate faces, and repair non-manifold
elements. Small holes are automatically closed using edge-based refinement to
maintain structural integrity. The refined meshes are then used in physics-based
simulations at each optimization iteration.

Physics-based Simulation: The reconstructed and refined meshes are reim-
ported into ArtiSynth for physics-based biomechanical simulation. This study
builds on the model from [13], which includes rigid bodies (resected mandible,
maxilla, hyoid), 24 Hill-type muscles, ligaments, a food bolus with 110 N re-
sistance, and a validated TMJ with FE capsule and rigid disc [12]. To model
different defects, the corresponding muscles attached to each resection area were
removed, as detailed in [13], which also provides information on muscle and liga-
ment properties. We further extended the model by incorporating FE plate and
a donor bone with cortical and cancellous layers. We used TetGen library [20] to
generate a volumetric mesh from the refined surface mesh in the previous stage.
We observed uniform cortical thickness and linearly mapped average Hounsfield
unit (HU) to bone density (0.7–1.8 g/cm3). Linear elastic material properties
were set as E = 13.7 GPa, ν = 0.3 for cortical bone and E = 1.1 GPa, ν = 0.3
for cancellous bone [9]. To secure the donor segment in place, we incorporated
a linear elastic titanium plate (ρ = 4.42 g/cm3, E = 100 GPa, ν = 0.3) with
rigid locking screws at segment midpoints, connecting the nearest nodes of the
plate and donor bone. The plate was attached to the resected mandible by di-
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Fig. 2: Parallel chart of 150 iterations for three defects with Fopt objective. Pa-
rameters are normalized to [−100, 100]. Magenta marks the optimal region.

rectly linking its nodes to the mandible’s surface. Our simulation models the
contact between the mandible and donor bone using vertex penetration and the
Aharonov–Jones–Landau (AJL) method [16]. To improve accuracy, we apply a
linear elastic contact [21,13], with E = 30 KPa, v = 0.3, and a thickness of
tcontact = 0.2 mm [10]. These parameters account for near-void soft tissue re-
gions forming in early reconstruction and the typical gap at the interface [10]. To
predict bone union, we used strain energy density (SED) normalized by appar-
ent bone density, the primary mechanical stimulus for bone remodeling. Based
on established remodeling algorithm [6,7,8,9,10], when the normalized SED, S,
exceeds S0(1 + §) with a lazy zone of 2§ = 0.2 and S0 = 0.036 mJ/g, bone
growth occurs, enhancing bone apposition. At each time step, the normalized
SED of each element is computed as S = (1/2)(σ : ε)/ρ, where σ and ε are
the element stress and strain tensors, respectively, and ρ is the element appar-
ent bone density. To assess remodeling, we overlaid a single element layer on
each donor resection side and defined the apposition fraction as the ratio of el-
ements exceeding the threshold to the total elements in the layer. We ran the
ArtiSynth forward dynamics simulation of chewing with the non-reconstructed
side and muscle activation set to pre-reconstruction levels to represent the early
stage of reconstruction [13]. The simulation used a constrained backward Euler
integrator (0.001s step) on a PC (16GB RAM, RTX 3060, i7-10700F@2.9GHz),
averaging 6 minutes per iteration.

2.2 Optimization Framework

Parameters Setup: Optimization parameters include the angular variables for
roll and pitch angles of the right and left resection planes, with θRp = θLp =
θRr = θLr = 0, and two length parameters: the vertical donor offset (lZ) and, for
the two segment case, the RDP point offset (lRDP ), both initially set to zero (see
Fig. 1). These baseline values are commonly used by surgeons. The parameters
are grouped as follows:

θ = (θLr, θLp, θRr, θRp)
T ∈ R4 (angular), l = (lZ , lRDP )

T ∈ R2 (length).
(1)

The full parameter vector is ϕ = (θT , lT )T ∈ R6, with the feasible region:

X =
{
ϕ ∈ R6 | θLr, θLp ∈ [−α, α], θRr, θRp ∈ [−β, β], lZ ∈ [−z, z], lRDP ∈ [−r, r]

}
.

(2)
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Fig. 3: Average of five trials showing mapped optimized parameters [−100, 100]
(col. 1), apposition average (col. 2), and apposition over time (col. 3) for three
defects (rows) and objectives: Fopt, FSF , and Baseline (parameters set to zero).

The parameter ranges for each defect type are chosen based on physical con-
straints, ensuring at most one tooth root is sacrificed and a 10–25 mm ver-
tical gap between the fibula and maxillary teeth for implant placement [22].
The vector (α◦, β◦, zmm, rmm) is set to (25◦, 20◦, 3.5,−) for the B defect,
(15◦, 15◦, 5,−) for the S defect, and (25◦, 15◦, 5, 7) for the RB defect. Jaw recon-
struction effectiveness is assessed using apposition fractions over a chewing cycle
with n = 62 data point (spanning 0.62 sec). Here, Li(ϕ) and Ri(ϕ) denote the
left and right fractions at each time step i, respectively, while Mi(ϕ) is defined
as the minimum fraction from the contacting middle resection planes as they
show similar behaviour. Their cycle averages are given by X(ϕ) = 1

n

∑n
i=1 X for

X ∈ {L,R,M}. We use X(ϕ) in our cost functions, since sustained contact is
key to union [23,2]. Two cost functions are then defined for optimization.

Cost Functions: The first cost function, Fopt, determines the optimal pa-
rameters by solving ϕ∗ = argminϕ −(Fopt) where

Fopt = W1

∑
X∈{L,R,M}

X(ϕ)−W2

∑
X ̸=Y ∈{L,R,M}

|X(ϕ)− Y (ϕ)|. (3)

In this equation, the first term rewards high overall apposition by maximizing
the sum of the average left, right, and middle apposition fractions, while the
second term penalizes asymmetry between them. The coefficients W1 = W2 = 0.5
balance these contributions.

The second cost function, FSF = Fopt−C, builds upon the first by introduc-
ing a penalty term C for deviations in safety factor:

C =
1

n

∑n

i=1

∑
s∈{left,right}

ws
(
max(0, SFdesired − SF s

worst,i)
)2
. (4)
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Fig. 4: Patient-specific validation against imaging data and sensitivity analysis.

The safety factor (SF ) quantifies structural integrity, defined as the ratio of
a bone’s compressive yield strength to its maximum experienced stress, with
SFdesired = 1. A higher SF indicates a lower failure risk. The worst-case safety
factor for each side is computed as:

SF s
worst,i = min

{
σyield, cortical

σs
maxP, cortical,i

,
σyield, cancellous

σs
maxP, cancellous,i

}
, s ∈ {left, right}. (5)

Here, σs
maxP, cortical/cancellous,i represents MPS in each region on side s at time

i during the chewing cycle. The yield stress values are set as σyield, cortical =
100MPa and σyield, cancellous = 5MPa [24].These parameters are selected to
ensure optimization under worst-case scenarios, taking into account the region
most prone to failure. The weighting factors ws = 0.5 apply equal penalty con-
tributions for both sides. These computationally expensive cost functions are
then used within a Bayesian optimization.

Bayesian Optimization: To efficiently explore the parameter space ϕ ∈ R6

within the feasible region X , we first generate nsamples = 25 points using a Sobol’
sequence [25] (with a skip of 1000 and a leap of 100). Each sample is then lin-
early mapped to the feasible region by scaling the Sobol’ values to the parameter
limits. This initialization establishes quasi-uniform coverage of X , reducing bias
prior to Bayesian Optimization. The complete dataset at iteration N is defined
by DN = {(ϕj , fj)}

nsamples
j=1 ∪ {(ϕj , fj)}Nj=nsamples+1, where f ∈ {Fopt, FSF } and

the first evaluations provide the initial sampling of X . The subsequent eval-
uations are incorporated iteratively to refine the search. The computationally
expensive function f(ϕ) is then modeled as a Gaussian Process (GP). Con-
ditioned on the dataset DN , the posterior distribution of f(ϕ) is modeled as
f(ϕ) | DN ∼ N

(
µN (ϕ), σ2

N (ϕ) + σ2
noise

)
, where µN (ϕ) denotes the posterior

mean, σ2
N (ϕ) the model-derived posterior variance, and σ2

noise accounts for ob-
servation noise. To balance exploration and exploitation, the Expected Improve-
ment Plus (EI+) acquisition function is used, prioritizing areas with the highest
potential for improvement. The minimum observed function value among the
dataset is defined as f̃min = min{fj : (ϕj , fj) ∈ DN}. with EI+ computation
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then follows [26]:

EI+(ϕ) =
(
f̃min − µN (ϕ)

)
Φ

(
f̃min − µN (ϕ)√

S(ϕ)

)
+
√

S(ϕ)φ

(
f̃min − µN (ϕ)√

S(ϕ)

)
.

(6)
where we define S(ϕ) = σ2

N (ϕ) + σ2
noise, and denote by Φ(·) and φ(·) the cu-

mulative distribution function and probability density function, respectively, of
the standard normal distribution. The next sampling point is selected by solving
ϕN+1 = argmaxϕ∈X EI+(ϕ).

2.3 Sensitivity Analysis & Validation

We analyzed model sensitivity by applying ±10% changes to 11 biomechanical
parameters, including bone properties, elastic contact, and muscle parameters,
and evaluated their impact on Fopt across all defect types. Each case was repeated
five times, yielding a total of 330 simulations, with the average effect reported.

Moreover, beyond analyzing synthetic defect cases (B, S, and RB), we per-
formed patient-specific validation using CT scans at 5 days and 1 year post-
surgery, along with post-operative MRI. The patient, a 65-year-old female, un-
derwent right ramus and body reconstruction with a scapular bone. The 5-day
CT was used to segment the mandible, maxilla, hyoid, and plate in Slicer, cap-
turing the early reconstruction stage. T1-weighted MRI was registered to CT
using Elastix [27] for TMJ disc segmentation. TotalSegmentator [28] was used
to segment four key masticatory muscles, and their physiological cross-sectional
areas were determined using the method described in [6]. Muscle insertions and
origins were manually assigned based on these segmentations, and the maxi-
mum lengths were obtained by scaling the resting lengths by a factor of 1.2 to
1.5 [13]. Several muscles/ligaments, similar to those excluded in the RB defect
(except temporalis), were omitted. FE components for the donor bone, fixation
plate, and TMJ capsule as well as simulation method followed Sec. 2.1. We used
the method in 2.1 to estimate a uniform cortical thickness of 0.78 mm. Cor-
tical and cancellous bone densities were set to ρ = 1.45 g/cm3 and ρ = 0.7
g/cm3, respectively, with other parameters unchanged. We assessed bone union
likelihood over a full chewing cycle by tracking apposition fraction at the donor-
mandible interface (resection sides). To assess prediction accuracy, the 1-year
CT was segmented, and a 1-voxel-thick tensor quantified bone formation at the
mandible-donor interface. Cortical bone percentage (cort%) was computed using
an HU threshold of 1000 [29], a known marker of bone formation and success-
ful union [30], generating a binary label map. We then used this percentage in
the simulation to rank and select the top cort% of elements on the resection
surface, prioritizing those that reached the apposition threshold and maintained
contact for a longer duration over the chewing cycle [23,2], representing regions
with prolonged bone-to-bone interaction. Finally, the centroids of these elements
were interpolated using the Gaussian method to align with the imaging voxel
grid, allowing direct correlation between simulation and clinical imaging data.
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3 Results and Discussion

Fig. 3 illustrates the optimized parameters and the average apposition behavior
over one chewing cycle for the three defect cases (B, S, and RB). The results
show that peak apposition occurs during the mid-phase (lateral movement) and
the end-phase (bolus chewing, gray background). The results, averaged over five
simulations with random initial values and 50 iterations, demonstrate the ro-
bustness and efficiency of the optimization process, achieving optimal values
with minimal observations. The optimization resulted in substantial relative im-
provements in predicted bone union— up to 329% for B, 146% for S, and 55%
for RB—compared to the surgeon’s common practice (baseline), while keeping
the standard deviation low. Changing the cost function from Fopt to FSF had
minimal impact on B, no impact on RB, but altered the optimized values for S,
which exhibited higher apposition during the bolus chewing phase, suggesting
a more conservative optimization approach may be necessary to reduce failure
risk. Moreover, the lower improvement in RB may result from extensive resection
and significant muscle loss, reducing load at the mandible-donor interface. Addi-
tionally, to demonstrate the impact of each parameter on the cost function Fopt,
we ran 150 iterations. Fig. 2 presents a parallel plot of the normalized variables
and their effect on optimization. As this is a minimization problem, lower val-
ues indicate more favorable outcomes, shown in magenta. The results highlight
the significant contribution of key surgical parameters, particularly for B and
S defects, while for RB, the right resection parameter had less influence due to
the lack of muscle and ligament support. While the Bayesian optimization was
run sequentially, its parallelization capability could further reduce runtime for
larger iterations. The sensitivity analysis further demonstrates the robustness of
our modeling, as shown in Fig. 4. Varying the modeling parameters by ±10%
resulted in less than a 4% change in the objective function.

Although the model we built upon had previously been validated against the
literature for jaw movement, bite force, muscle activation, condyle motion, and
bone remodeling [13,6,7,8,9], we further validated it using longitudinal patient-
specific data. Because assigning different resection or donor positions within a
single patient is not feasible, we assessed simulation accuracy by comparing the
predicted bone likelihood with patient-specific observations. Fig. 4 illustrates the
patient-specific model, with the right and left resection surfaces in blue. The sim-
ulation’s predicted bone formation (orange), based on Sec 2.3, was compared to
cortical bone formation observed in imaging (red). The overlap between predic-
tion and imaging data (pink) yielded a Dice coefficient of 0.7 for the left surface
and 0.76 for the right surface, indicating a strong correlation. However, some dis-
crepancies may stem from missing patient-specific data, such as jaw movement,
and modeling simplifications, particularly in screw modeling near the resections.

4 Conclusion and Future Directions

This study introduces an automated Bayesian optimization framework for key
surgical variables, achieving up to a 329% improvement in predicted bone union.
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While model predictions have been validated against patient-specific clinical
data, larger datasets are needed for broader confirmation. To date, the approach
has been tested in a single patient because obtaining longitudinal imaging at 5
days and 1 year post-surgery is challenging and not part of routine care; addi-
tional CT scans also raise radiation-exposure concerns, particularly for patients
receiving adjuvant therapy.

Future work will refine the model by incorporating volumetric muscle rep-
resentations and patient-specific data on mandibular kinematics, muscle acti-
vation, and bite force. We will also evaluate additional variables, such as screw
positioning, and conduct usability testing with surgeons. Although outcome vari-
ability has not yet been fully studied across different patients, we hypothesize
that individuals with similar defect types—classified according to Urken—will
exhibit comparable responses; this will be investigated in future studies.
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