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Abstract. Deep learning has made signi�cant progress in natural image
segmentation but faces challenges in medical imaging due to the limited
availability of annotated data. Few-shot learning o�ers a solution by
enabling segmentation with only a few labeled samples, yet generaliza-
tion remains a challenge when data is scarce. In this work, we investi-
gate the potential of the Segment Anything Model (SAM), a foundation
model trained on over one billion annotated images, for few-shot med-
ical image segmentation. However, SAM faces two key challenges: (1)
the domain gap between natural and medical images, leading to subop-
timal performance, and (2) prompt dependency, as SAM requires user-
de�ned prompts, limiting automation. To address these issues, we pro-
pose a novel framework, named AM-SAM, that adapts SAM for few-shot
medical image segmentation. Our approach introduces a medical image-
speci�c augmentation strategy and a dual-encoder architecture to bridge
the domain gap. Additionally, we develop an automated dual-prompt
mechanism to eliminate prompt dependency, generating point and mask
prompts from support images. Extensive experiments show that AM-
SAM outperforms existing approaches by up to 3.8% on ABD-MRI and
4.0% on ABD-30 in terms of dice score metric.

Keywords: Medical image segmentation · Segment Anything Model ·

Few-shot learning

1 Introduction

Medical image segmentation is a fundamental task in healthcare, playing a cru-
cial role in diagnosis, treatment planning, and quantitative tissue analysis [26].
By precisely delineating anatomical structures and abnormalities, segmentation
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empowers clinicians to make accurate and informed medical decisions. However,
unlike natural image segmentation, medical imaging presents unique challenges,
primarily due to the scarcity of annotated data [2, 3]. Producing high-quality
annotations requires expertise from trained medical professionals and is both
time-consuming and labor-intensive. This limitation signi�cantly hinders the ef-
fectiveness of supervised learning models, making it di�cult to develop robust
and generalizable segmentation algorithms.

To tackle this issue, few-shot learning has emerged as a promising approach,
allowing models to segment new anatomical structures with only a small num-
ber of labeled samples [22, 27]. In a typical few-shot learning framework, a base
model is pre-trained on a dataset containing known anatomies. During infer-
ence, a small support set of annotated novel anatomies is provided, and the
model leverages this information to accurately segment corresponding structures
in query images. The performance of few-shot segmentation models depends on
two key factors: the ability of the base model to learn generalizable features
and the e�ectiveness of utilizing support data for query image segmentation.
Among existing techniques, two dominant approaches have gained traction: pro-
totypical methods [21, 9] and meta-learning [24, 1]. Prototypical methods create
representative prototypes from annotated support masks and use them to seg-
ment query images [25], while meta-learning focuses on training a model that
can quickly adapt to unseen data [17]. Regardless of the approach, developing a
highly generalizable base model is essential and achieving this requires training
on a large-scale dataset.

The Segment Anything Model (SAM) [12] is a state-of-the-art foundation
model for image segmentation, trained on a massive dataset of over one billion
annotated images. Due to its strong generalization capabilities, an intriguing
direction is to use SAM as the base model for few-shot medical image segmen-
tation. However, integrating SAM into a few-shot framework presents two key
challenges. First, SAM is pre-trained on natural images, yielding subpar perfor-
mance on the medical imaging [28].

Although �ne-tuning SAM for medical imaging tasks has been explored [10],
these methods typically require large amounts of labeled data, which contra-
dicts the constraints of few-shot learning. Second, SAM requires user-speci�ed
prompts for interactive inferencing. This prompt dependency limits its its use in
a prompt-free segmentation scenario.

To overcome these challenges, we propose a novel framework that incorpo-
rates SAM for few-shot medical image segmentation while addressing both do-
main gap and prompt dependency issues. To mitigate the domain gap, we intro-
duce a medical image-speci�c augmentation strategy that enhances the visibility
of anatomical structures. Additionally, we develop a dual-encoder mechanism
with two separate encoders: one extracting features from the original image and
the other from the augmented image. This approach improves feature extraction
and enhances segmentation performance. To resolve the prompt dependency is-
sue, we introduce a dual-prompt mechanism that automatically generates two
types of prompts�point prompts and mask prompts�directly from the sup-
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Fig. 1: Illustration of the training and inference pipeline of AM-SAM.

port samples. These prompts are then fused to guide the segmentation decoder,
enabling prompt-free inference.

Our contributions can be summarized as follows:

� We introduce a novel approach, named AM-SAM, for leveraging SAM in
few-shot medical image segmentation, focusing on enhancing the encoder's
ability to extract useful information from query images while maximizing
the e�ective use of the support data.

� We propose a data augmentation technique based on the Mean-Shift Clus-
tering algorithm [6], which highlights anatomical boundaries and improves
segmentation accuracy.

� We develop an automatic dual-prompt generation method that extracts both
point prompt and mask prompt from a support image, e�ectively guiding
the segmentation decoder.

� Extensive experiments demonstrate the superiority of our proposed method
over existing approaches, signi�cantly improving segmentation performance
in few-shot medical imaging scenarios.

2 Proposed Method

2.1 Overview

Figure 1 illustrates the overall pipeline of AM-SAM, which consists of three main
components: the Visual Encoder, the Prompt Encoder, and the Decoder. The
Visual Encoder (Sec. 2.2) learns from both the original and augmented images,
extracting essential features for segmentation. The Prompt Encoder (Sec.2.3)
generates prompts from query images and learns their representation to guide
the model in identifying the relevant regions for segmentation. Finally, the De-
coder integrates the information from both the Visual and Prompt Encoders to
generate the segmentation output. In our approach, we utilized a lightweight
decoder [14], which allows for time-e�cient execution.
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Fig. 2: Comparison between the original image (left) and the Mean Shift Clustering
result (right). The clustering process groups pixels with similar intensities, e�ectively
enhancing the segmentation of distinct anatomical regions in the medical image.

2.2 Visual Encoder

The Visual Encoder is crucial to the model's performance. While existing ap-
proaches �ne-tune the pretrained SAM, we argue that in few-shot learning, �ne-
tuning alone is insu�cient to bridge the gap between unseen medical images
and training data. To address this, we enhance the encoder by incorporating
augmented data that highlights anatomical structures, improving segmentation
accuracy. Our Visual Encoder comprises two key components: image augmen-
tation and a dual-encoder mechanism. We apply the Mean-Shift Clustering, an
unsupervised algorithm that enhances contrast between anatomical structures
and the background. This generates augmented images with clearer anatomical
boundaries, allowing the encoder to extract more informative features for im-
proved segmentation. Speci�cally, the algorithm takes the original image as input
and iteratively shifts pixels toward regions of higher density using the following
formula:

m(x) =

∑
xi∈S K(xi − x)xi∑
xi∈S K(xi − x)

; K(x) = exp

(
−∥x∥2

2h2

)
, (1)

where x represents the current pixel, xi are neighboring pixels within the search
window S, and K(x) is a kernel function. The pixel positions are iteratively
updated as xt+1 = m(xt), shifting each pixel toward the mean of its weighted
neighbors until convergence. This process systematically clusters pixels into high-
density regions by grouping those with similar characteristics. Consequently, at
image boundaries where intensity variations are pronounced, data points become
more concentrated, leading to improved delineation of anatomical structures.
Figure 2 illustrates the input image alongside the results of the clustering process.

We adopt a dual-encoder architecture, where one encoder processes the orig-
inal image while the other handles the augmented data. The extracted em-
beddings from both encoders are then fused through a Transformer-based fu-
sion block to enhance feature representation. We leverage the pretrained Vi-
sion Transformer (ViT) from SAM's image encoder and introduce a lightweight
Adapter at the beginning of each ViT block. Unlike existing methods, our ap-
proach bene�ts from augmented images, enabling the use of a more computa-
tionally e�cient lightweight Adapter. Each adapter comprises two components,
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with four inner MLP layers per adapter and a shared outer layer across the
adapters. The empirical results in Section 3 shows that our Adapter yields su-
perior performance compared to existing approaches.

2.3 Automated Prompt Generation

We generate two distinct types of prompts from a support image: the point
prompt and the mask-prompt. The point prompt is derived by randomly select-
ing a set of points within the annotated label region of the support image. On
the other hand, the mask prompt is produced using a mask generator, which
leverages convolutional layers in combination with bilinear interpolation to cre-
ate a mask from the point prompt. The mask generator is trained during the
model's training phase and remains freezing during inference. Both prompts are
processed through separate encoders to learn their respective representations.
The representation of the point prompt is fused with the visual embeddings,
while that of the mask prompt is directly fed into the decoder to guide the
segmentation process.

2.4 Training Objective

Our loss function is composed of two components: Dice Loss and IoU Loss.
The Dice Loss minimizes the discrepancy between the predicted mask and the
ground truth, while the IoU Loss maximizes the overlap between the predicted
and ground truth regions. By combining these two losses, we e�ectively guide
the model to generate accurate segmentation predictions. We employ a common
meta-learning approach named MAML [7] to enable the model to adapt to the
support samples during the inference phase.

3 Experiments and Evaluations

3.1 Experimental Settings

We conduct experiments on two datasets, ABD-MRI [11] and ABD-30 [13], with
the following two settings:

� Setting I: allows for the presence of unseen anatomies in the training data
(although they remain unlabeled).

� Setting II: ensures that all images in the training data do not contain the
unseen anatomies.

We use the dice score as the primary metric to evaluation and compare the
performance of our method with six popular medical images few-shot learning
baselines, namely SE-Net [19], RP-Net [23], SSL-ALPNet [18], Q-Net [20], CAT-
Net [15] and SSM-SAM [14]. For each task, we allocate 125 images: 5 images serve
as support images for training the inner model, while the remaining 120 images
are reserved for evaluating the outer model. During testing, we adopt a 1-way,
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5-shot learning approach, using �ve images as the support set. To leverage the
pre-trained weights of SAM, all images in PNG format are resized to 1024×1024
pixels. The general con�guration for the parameters of SAM's image encoder is
retained, ensuring that the model remains frozen during training. The resized
1024 × 1024 images are split into patches of size 16 × 16 and embedded into a
latent vector space. For all experiments, we train the AM-SAM network for 50
epochs, with 3 inner training rounds per epoch. During inner training, we use
the Stochastic Gradient Descent optimizer [4] with a learning rate of 0.0001.
For optimizing the meta-learner, we utilize the AdamW optimizer [29] with a
learning rate of 0.0002. Additionally, we apply Linear Learning Decay [8] with a
decay rate of 1e−2, and Cosine Annealing [16] with a minimum learning rate of
1e−7, to dynamically adjust the learning rate during training. Our models are
implemented in PyTorch, and the AM-SAM network is trained on an NVIDIA
GeForce RTX 3090 with 24GB VRAM.

3.2 Comparison with Baseline Models

We compare the top-1 dice score achieved by AM-SAM with state-of-the-art
(SOTA) methods in medical few-shot image segmentation (Table 1). As demon-
strated, AM-SAM outperforms the other benchmarks in nearly all cases, achiev-
ing the highest results in four tasks. Speci�cally, our method shows improve-
ments of approximately 3.8% in Setting I and 2.3% in Setting II on average for
the ABD-MRI dataset, and 4.0% and 1.6% for the ABD-30 dataset, compared
to the second-best performing method. Notably, our approach excels in tasks
involving the left kidney, right kidney, and spleen. However, the results for the
liver task are relatively less impressive.

3.3 Ablation Studies

We conducted a series of experiments to assess the e�ectiveness of two key com-
ponents in our approach: the dual encoder and automated prompting. The results
of these experiments are provided in Table 2.
Impacts of the Dual-encoder.We compare the model's performance with and
without the use of the augmented image (denoted as �w/o MSC�). The �ndings
reveal that integrating Mean Shift-based augmented images results in a dice
score improvement of approximately 6.5% to 13.6% across four tasks in Setting
I, with an average increase of 7.7% in Setting II on the ABD-MRI dataset. For
the ABD-30 dataset, the improvements are 15.6% in Setting I and 11.9% in
Setting II, on average across the four tasks.
Impacts of the Automated Prompts. To evaluate the impact of the auto-
mated mask prompts, we compared the performance of AM-SAM with a variant
that does not use any prompt (denoted as �w/o MP�). The results demonstrate
that incorporating our automated masks leads to notable improvements in three
tasks, excluding the liver task. Speci�cally, there were improvements of around
3.4% to 3.6% in ABD-MRI and 5.5% to 6.5% in ABD-30 on average across
the two settings. Additionally, we compare our proposed mask-prompt with the
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Table 1: Comparison of AM-SAM with state-of-the-art methods based on the dice
score. The highest-performing results are highlighted in red, while the second-best
results are marked in blue. The values within (.) indicate the relative performance
gap between AM-SAM and the best competing method.

Settings Methods
Tasks

L Kidney ↑ R Kidney ↑ Liver ↑ Spleen ↑ Mean ↑

Setting I
ABD-MRI

SE-Net 45.78 47.96 29.02 47.30 42.51
ALPNet 70.17 77.05 72.45 67.71 71.85
Q-Net 73.96 81.07 72.36 65.39 73.20
CAT-Net 75.31 83.23 75.02 67.31 75.22
SSM-SAM 74.13 81.22 76.16 74.97 76.62
Ours 78.28 (+3.9%) 81.46 (-2.1%) 79.70 (+4.6%) 78.80 (+5.1%) 79.56 (+3.8%)

Setting II
ABD-MRI

SE-Net 62.11 61.32 27.43 51.80 50.66
RP-Net 79.30 84.66 71.51 75.69 77.79
ALPNet 73.63 78.39 73.05 67.02 73.02
Q-Net 74.05 77.52 78.71 67.43 74.43
CAT-Net 74.01 78.90 78.98 68.83 75.18
SSM-SAM 81.70 80.38 77.50 78.81 79.59
Ours 84.17 (+3.0%) 84.95 (+0.3%) 76.12 (-3.6%) 80.36 (+1.7%) 81.40 (+2.3%)

Setting I
ABD-30

SE-Net 24.42 12.51 35.42 43.66 29.00
ALPNet 72.36 71.81 78.29 70.96 73.35
Q-Net 68.55 63.47 71.12 68.95 68.02
CAT-Net 72.34 69.91 75.90 73.39 72.89
SSM-SAM 79.12 80.03 81.36 82.92 80.86
Ours 82.78 (+4.6%) 84.02 (+5.0%) 85.40 (+5.0%) 83.97 (+1.3%) 84.04 (+4.0%)

Setting II
ABD-30

SE-Net 32.83 14.34 0.27 0.23 11.91
RP-Net 70.48 70.00 79.62 69.85 72.48
ALPNet 63.34 54.82 73.65 60.25 63.02
Q-Net 63.26 58.37 74.36 63.36 64.83
CAT-Net 63.36 60.05 75.31 67.65 66.59
SSM-SAM 80.96 84.47 87.12 86.95 84.87
Ours 84.37 (+4.2%) 86.01 (+1.8%) 87.28 (+0.2%) 87.11 (+0.2%) 86.19 (+1.6%)

Gaussian support mask mechanism used in SSM-SAM. The results, presented in
Table 4, demonstrate that our mask prompt consistently outperforms the Gaus-
sian support mask across all experimental scenarios. Speci�cally, our approach
achieves an average accuracy improvement ranging from 0.9% to 2.3%.
Impacts of the Adapter. We conducted experiments to evaluate the e�ec-
tiveness of our proposed adapter mechanism by comparing it with the adapter
used in Adapter-SAM [5]. The results, presented in Table 3, indicate that our
adapter mechanism consistently outperforms Adapter-SAM across all scenarios,
achieving a substantial performance gap, with an average relative improvement
ranging from 1.3% to 2.3%.

In summary, the result indicates that both the dual encoder and the Mask-
guided prompting mechanism make substantial contributions to the model's per-
formance. Speci�cally, the dual encoder enhances the model's ability to re�ne
spatial information and feature representation, while the mask-guide prompting
e�ectively captures and leverages intricate details within the data. Together,
these components synergistically improve the overall e�ectiveness and accuracy
of the model in the experimental results.

4 Conclusion

In this study, we proposed a novel approach for leveraging SAM in few-shot
medical image segmentation. Our method is built upon two key components:
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Table 2: Comparison of AM-SAM with its variants�one without augmented data (w/o
MSC) and one without automated prompts (w/o MP)�across di�erent settings. The
best results are highlighted in red and the second-best results in blue. The numbers
in (.) indicate the relative performance gaps between AM-SAM and the second-best
performing model.

Settings Methods
Tasks

L Kidney ↑ R Kidney ↑ Liver ↑ Spleen ↑ Mean ↑

Setting I
ABD-MRI

w/o MSC 71.99 76.52 72.13 69.36 72.50
w/o MP 75.73 79.68 76.93 75.31 76.91
AM-SAM 78.28 (+3.9%) 81.46 (+2.2%) 79.70 (+3.6%) 78.80 (+4.6%) 79.56 (+3.4%)

Setting II
ABD-MRI

w/o MSC 75.91 77.97 75.15 73.27 75.58
w/o MP 79.40 80.64 76.87 77.49 78.59
AM-SAM 84.17 (+6.0%) 84.95 (+5.3%) 76.12 (-1.0%) 80.36 (+3.7%) 81.40 (+3.6%)

Setting I
ABD-30

w/o MSC 74.55 73.86 70.08 72.42 72.73
w/o MP 78.94 79.22 79.01 78.36 78.88
AM-SAM 82.78 (+4.9%) 84.02 (+6.1%) 85.40 (+8.1%) 83.97 (+7.2%) 84.04 (+6.5%)

Setting II
ABD-30

w/o MSC 76.83 75.58 78.20 77.46 77.02
w/o MP 80.16 82.11 81.39 83.25 81.73
AM-SAM 84.37 (+5.3%) 86.01 (+4.7%) 87.28 (+7.2%) 87.11 (+4.6%) 86.19 (+5.5%)

Table 3: Comparison of our lightweight Adapter and Adapter-SAM's adapter.

Settings Methods
Tasks

L Kidney ↑ R Kidney ↑ Liver ↑ Spleen ↑ Mean ↑

Setting I
ABD-MRI

AS Adapter 77.12 80.36 79.42 75.09 78.00
Ours 78.28 81.46 79.70 78.80 79.56 (+1.3%)

Setting II
ABD-MRI

AS Adapter 83.33 81.46 74.34 80.21 79.84
Ours 84.17 84.95 76.12 80.36 81.40 (+2.0%)

Setting I
ABD-30

AS Adapter 80.18 82.86 82.13 83.60 82.19
Ours 82.78 84.02 85.40 83.97 84.04 (+2.3%)

Setting II
ABD-30

AS Adapter 83.12 84.24 86.33 85.17 84.72
Ours 84.37 86.01 87.28 87.11 86.19 (+1.7%)

(*) AS Adapter means we replace our adapter with those of Adapter-SAM,
(**) Better results are underlined.

a dual-encoder framework, which enriches feature representation by incorpo-
rating both the original and augmented images; and an automated prompting
mechanism, where point-prompt and mask-prompt are generated from support
images to e�ectively utilize support sample information and guide the decoder
for enhanced accuracy. Experimental results demonstrated that our approach
signi�cantly outperforms existing state-of-the-art methods, achieving superior
segmentation accuracy across various tasks. Speci�cally, AM-SAM outperforms
existing approaches by up to 3.8% on ABD-MRI and 4.0% on ABD-30 datasets.
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Table 4: Comparison of our proposed masks an the mask used in SSM-SAM.

Settings Methods
Tasks

L Kidney ↑ R Kidney ↑ Liver ↑ Spleen ↑ Mean ↑

Setting I
ABD-MRI

SSM-SAM 75.45 81.25 77.60 78.13 78.10
Ours 78.28 81.46 79.70 78.80 79.56(+0.9%)

Setting II
ABD-MRI

SSM-SAM 83.21 83.18 76.61 79.12 80.53
Ours 84.17 84.95 76.12 80.36 81.40(+1.1%)

Setting I
ABD-30

SSM-SAM 80.15 83.26 83.35 81.99 82.19
Ours 82.78 84.02 85.40 83.97 84.04(2.3%)

Setting II
ABD-30

SSM-SAM 82.49 84.88 86.32 84.79 84.62
Ours 84.37 86.01 87.28 87.11 86.19(+1.9%)

(*) Better results are underlined.
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