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Abstract. Function-structure connectivity (FSC) coupling helps reveal
alterations in the interplay between brain functional connectivity (FC)
and structural connectivity (SC) caused by neurocognitive decline. Ex-
isting studies on FSC coupling typically focus on modeling interactions
between static FC and SC features, ignoring temporal dynamics con-
veyed in functional MRI (fMRI) time series. Additionally, conventional
strategies often compute global whole-brain FSC correlation or assess
local region-specific FSC correspondences, without capturing complex
inter-region dependencies between FC and SC patterns. To this end,
we propose a dynamic function-structure connectivity coupling (DFSC)
framework to predict progression trajectories in neurocognitive decline
with fMRI and diffusion tensor imaging (DTI) data. In DFSC, we first
construct static SC and dynamic FC graphs and use graph neural net-
works (GNNs) for feature learning, yielding new SC and FC embeddings.
Based on these embeddings, we construct dynamic local-to-global FSC
coupling graphs to capture both region-specific and inter-region depen-
dencies between FC and SC, followed by GNNs to generate dynamic FSC
coupling embeddings. These multi-view embeddings are finally fed into a
squeeze-excitation readout module and a Transformer for feature fusion
and prediction. Experimental results on two datasets with paired fMRI
and DTI data from a total of 231 subjects demonstrate that our DFSC
outperforms several state-of-the-art methods. With the DFSC, one can
identify both discriminative brain regions and between-group FSC cou-
pling difference, facilitating objective quantification of structural and
functional brain changes associated with neurocognitive decline.

Keywords: Dynamic function-structure coupling · Neurocognitive de-
cline · Functional MRI · Diffusion tensor imaging

1 Introduction

Resting-state functional MRI (fMRI) reflects brain neural activity fluctuations
by detecting blood oxygenation level-dependent signals, while diffusion tensor
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Fig. 1. Illustration of the proposed DFSC framework, consisting of (1) modality-specific
graph embedding learning from fMRI and DTI data, (2) dynamic function-structure
connectivity (FSC) coupling learning, and (3) multi-view feature fusion and prediction.

imaging (DTI) reveals brain anatomical structure by quantifying white matter
tracts [8]. Function-structure connectivity (FSC) coupling analysis provides in-
sights into alterations in the interplay between brain functional connectivity (FC)
derived from fMRI and structural connectivity (SC) from DTI, facilitating detec-
tion of neurocognitive decline [2,5,27]. However, previous FSC coupling studies
generally focus on investigating interactions between static FC and SC patterns,
without considering dynamic properties of FC that fluctuate over time [21].

Additionally, existing studies often model whole-brain FSC coupling by com-
puting correlation coefficients between vectorized FC and SC features, suggesting
that FSC coupling alteration is associated with cognitive decline [20]. However,
they ignore regional-level FSC coupling changes, limiting their ability to detect
fine-grained imaging biomarkers. Some recent efforts have been devoted to char-
acterizing local correspondences of paired regions in FC and SC networks [14,26],
but fail to capture inter-region dependencies between FC and SC patterns.

To this end, we propose a dynamic function-structure connectivity coupling
(DFSC) framework to predict progression trajectories in neurocognitive decline
with fMRI and DTI. As shown in Fig. 1, we first construct static SC and dynamic
FC graphs and use graph neural networks (GNNs) for modality-specific graph
embedding learning, generating new SC and FC features respectively. By measur-
ing correlation strength across all regions between each of multiple dynamic FC
embeddings and the static SC embedding, we construct dynamic local-to-global
FSC coupling graphs to capture both region-specific and inter-region dependen-
cies between FC and SC, followed by GNNs to learn dynamic FSC coupling fea-
tures. After that, a squeeze-excitation readout converts these multi-view graph
embeddings into graph-level feature vectors. Finally, a Transformer is applied
to integrate multi-view features (i.e., FC, SC, and FSC), followed by a multi-
layer perceptron (MLP) for prediction. Experiments on two datasets with paired
resting-state fMRI and DTI data from a total of 231 subjects demonstrate the
superiority of DFSC. With DFSC, one can identify both discriminative brain re-
gions and between-group FSC coupling difference, enhancing objective quantifi-
cation of brain functional and structural changes associated with neurocognitive
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decline. To our knowledge, this is among the first attempts to model temporally
dynamic FSC coupling graphs while capturing local-to-global regional interac-
tions between FC and SC patterns derived from fMRI and DTI data.

2 Materials and Methodology

2.1 Subjects and Data Preprocessing

Two datasets are included: a public ADNI [18] dataset and an in-house dataset
(called HCD) [31]. The ADNI contains 46 subjects with subjective memory com-
plaints (SMC) with paired fMRI and DTI data and 48 gender- and age-matched
normal controls (NCs). The HCD includes 68 HIV-infected patients who exhibit
asymptomatic neurocognitive impairment (ANI) and 69 NCs.

The fMRI data are preprocessed using DPARSF [34], including discarding
the first 10 volumes for magnetization equilibrium, slice-timing correction, head
motion correction, nuisance signal regression, co-registration with T1-weighted
MRI, spatial normalization to MNI space, bandpass filtering (0.01–0.10Hz), and
extracting the average time series of 116 regions-of-interest (ROIs) defined by
AAL atlas. The DTI data are preprocessed using PANDA [6]: head motion cor-
rection, eddy current correction, skull removal, registration with T1-weighted
MRI, and fiber tracking. With AAL, we can generate a 116× 116 matrix based
on white matter fiber numbers between paired ROIs for each subject.

2.2 Proposed Method

Our goal is to model region-specific and inter-region dependencies between dy-
namic FC and SC graphs (from fMRI and DTI, respectively) for neurocognitive
decline analysis. As shown in Fig. 1, the proposed DFSC consists of (1) modality-
specific graph embedding learning, (2) dynamic function-structure connectivity
(FSC) coupling learning, and (3) multi-view feature fusion and prediction.

Modality-Specific Graph Embedding Learning. Resting-state fMRI helps
reveal functional interactions between ROIs based on synchronized brain neural
activity, while DTI reflects brain physical connections by quantifying between-
region white matter fibers [8]. To explore brain connectivity patterns from phys-
iological and anatomical views, we construct an FC graph from fMRI and an SC
graph from DTI for each subject. Considering that fMRI time series fluctuate
over time, we use sliding windows to divide regional signals into T segments and
compute Pearson correlation between paired ROIs within each segment, yield-
ing dynamic FC matrices XF

t ∈ RN×N (t=1, · · · , T ). For DTI, we normalize the
preprocessed white fiber number matrix, obtaining an SC matrix XS ∈ RN×N ,
where N=116 is the number of ROIs. To remove redundant and noisy informa-
tion in brain networks [21, 31], we keep the top 30% strongest connectivities to
generate T +1 adjacency matrices (i.e., {AF

t }Tt=1 and AS) for FC and SC graphs.



4 Q. Wang, W. Wang, H. Li, W. Li, and M. Liu

With the constructed graphs as input for each modality, we use the graph
attention network (GAT) [29] as the backbone to learn graph embeddings by
aggregating node features from their neighbors. The updated node embedding is

formulated as: E=σ
(∑K

k=1A
kXW k

)
∈ RN×D, where σ is an activation function,

K is the number of attention heads, W k is the learnable weight matrix, and
D is the dimension of learned embedding. The to-be-learned connection weight
between the ROIs i and j in Ak at the k-th self-attention head is formulated as:

aij =
exp

(
ψ [xiW∥xjW ] ηT

)∑
j′∈Ni

exp (ψ [xiW∥xj′W ] ηT )
, (1)

where ψ is the LeakyReLU function, xi and xj are node features for ROI i and
j, ∥ denotes concatenation, η is a learnable weight vector, W is the trainable
weight matrix, and Ni is the neighboring node set for ROI i. The self-attention
mechanism in Eq. (1) computes attention scores for each node to its neighbors,
thereby assigning importance weights to each neighbor’s features for updating
its own representation and extracting informative graph embeddings. With a
multi-branch GAT architecture (see Fig. 1), we obtain dynamic FC embeddings
EF

t ∈ RN×D (t=1, · · · , T ) and SC embedding ES ∈ RN×D for each subject.

Dynamic FSC Coupling Learning. Previous evidence suggests that alter-
ations in FSC coupling are associated with neurocognitive decline [14]. Different
from existing studies that mainly investigate the interplay between static FC and
SC features [14,26], we explore how the interactions between FC and SC change
over time based on dynamic FC and SC embeddings. For each time segment t,
we calculate the Pearson correlation between the learned FC embedding EF

t and
SC feature ES to construct an FSC coupling graph with the adjacency matrix
AFS

t , where the coupling strength aFS
ij between ROIs i and j is defined as:

aFS
ij =

∑D
k=1

(
EF

t (i, k)− ĒF
t (i)

) (
ES(j, k)− ĒS(j)

)√∑D
k=1

(
EF

t (i, k)− ĒF
t (i)

)2 ∑D
k=1

(
ES(j, k)− ĒS(j)

)2 , (2)

where EF
t (i, k) and ES(j, k) are the k-th feature of the i-th row in FC embedding

and the j-th row in SC embedding, and ĒF
t (i) and ĒS(i) are the mean values of

the i-th row of FC embedding and the j-th row of SC embedding. Unlike con-
ventional FSC coupling focusing on region-specific interactions between FC and
SC [26], our coupling graph can simultaneously model region-specific and inter-
region dependencies between FC and SC patterns, providing a fine-grained profile
of dynamic interplay between physiological and anatomical connectivity. For the
FSC coupling graph at segment t, we use coupling strength as node feature, with
the node feature matrix represented as XFS

t =AFS
t .With dynamic FSC coupling

graphs {GFS
t =(AFS

t , XFS
t )}Tt=1 as input, we adopt multi-branch GATs for feature

learning, producing dynamic FSC coupling embeddings {EFS
t }Tt=1 ∈ RN×D.

Multi-View Feature Fusion & Prediction. With multi-view dynamic graph
embeddings ({EF

t }Tt=1, E
S, and {EFS

t }Tt=1) as input, we use squeeze-excitation



Dynamic Function-Structure Connectivity Coupling 5

Table 1. Results of different methods in 2 tasks. The term ‘*’ denotes that the results
of DFSC and a competing method are statistically significantly different (p < 0.05).

Method SMC vs. NC classification on ADNI ANI vs. NC classification on HCD

AUC (%) ACC (%) SEN (%) SPE (%) BAC (%) AUC (%) ACC (%) SEN (%) SPE (%) BAC (%)

SVM 59.2(8.8)∗ 55.3(5.2) 59.5(6.8) 51.8(9.1) 55.6(6.1) 59.4(2.2)∗ 54.4(1.7) 55.7(3.6) 52.3(4.1) 53.9(1.3)
RF 57.9(4.5)∗ 56.3(3.8) 59.0(6.1) 56.3(3.8) 57.7(3.3) 55.1(5.2)∗ 52.9(4.0) 52.9(6.5) 54.6(4.2) 53.7(3.9)
GCN 63.1(4.9)∗ 57.6(3.6) 62.5(1.2) 54.7(6.0) 58.6(3.0) 64.2(2.1)∗ 59.6(2.3) 58.7(5.1) 61.7(4.9) 60.2(2.4)
GAT 65.6(4.5)∗ 58.5(2.3) 65.7(8.3) 52.9(9.7) 59.3(1.7) 65.7(3.9) 61.1(3.0) 62.5(5.8) 59.5(6.0) 61.0(0.1)
BrainNetCNN64.7(9.3)∗ 60.1(6.7) 58.2(3.2) 62.3(14.2) 60.2(8.7) 62.4(2.6)∗ 58.8(1.3) 58.2(6.0) 60.6(3.1) 59.4(1.9)
BrainGNN 63.9(4.2)∗ 60.3(3.4) 62.2(3.8) 57.5(7.7) 59.9(2.2) 63.0(3.2)∗ 60.3(2.6) 56.3(6.0) 63.7(5.6) 60.0(1.8)
STAGIN 65.0(5.4)∗ 58.5(6.3) 59.6(5.5) 60.2(9.6) 59.9(5.6) 63.7(4.0)∗ 60.6(2.6) 62.0(3.2) 60.8(1.7) 61.4(2.4)
HGNN 66.5(5.1)∗ 60.4(5.5) 64.1(6.5) 57.8(5.9) 60.9(5.8) 66.9(1.9)∗ 59.5(2.3) 58.1(2.6) 63.2(3.7) 60.6(2.6)
M-GCN 58.5(7.4)∗ 53.4(4.7) 54.3(12.1) 53.2(8.3) 53.8(4.6) 54.3(7.2)∗ 52.7(4.9) 53.6(12.7)53.6(11.7) 53.6(5.3)
Cross-GNN 68.8(6.7)∗ 59.8(6.5) 62.1(8.0) 61.5(7.6) 61.8(6.5) 60.7(4.4)∗ 57.3(4.4) 62.9(7.0) 54.8(5.2) 58.8(4.1)
DFSC (Ours) 70.7(3.6) 63.5(4.0) 59.8(7.5) 69.2(4.2) 64.5(3.4) 68.2(3.1) 62.1(2.6) 61.3(1.8) 64.2(3.9) 62.7(2.3)

(SE) [17] to convert node-level embeddings to graph-level features, formulated
as f=EΦ(P2σ(P1Eϕmean)), where Φ is a sigmoid function, P1 and P2 are learnable
weight matrices in a multilayer perceptron (MLP), σ is an activation function,
and ϕmean is an average operation. In this way, one can identify contributions
of each ROI to downstream tasks. With SE-based readout, we get multi-view
features {fF

t }Tt=1, f
S, and {fFS

t }Tt=1, followed by a single-head Transformer [32]
for feature fusion. Specifically, we first stack the multi-view features to form
an input matrix F=[fF

1 , · · · , fF
T , f

S , fFS
1 , · · · , fFS

T ]⊤∈ R(2T+1)×D. Denoting φ1, φ2,
and φ3 as linear operations, the self-attention matrix across dynamic FC, SC, and

FSC coupling features is computed as Z=Softmax
(
QK⊤/

√
d
)
, where Q=φ1(F ),

K=φ2(F ), and d is a scaling factor. So we can obtain temporally and cross-view
attended feature via F̃=ZV=Zφ3(F )∈ R(2T+1)×D. This helps capture long-range
dependencies across time segments and multiple views, enhancing discriminative
power of learned features. We then average the attended feature F̃ to generate a
D-dimensional feature vector for each subject, followed by an MLP for prediction.

The DFSC provides a data-driven framework for modeling temporally dy-
namic interactions between FC and SC patterns. It is implemented in PyTorch
and trained using an Adam optimizer with a cross-entropy loss (learning rate:
10−5, batch size: 12, epoch: 30). The time segments (T ) are 6, the graph embed-
ding dimension (D) is 64, and attention heads (K) in GAT are 4.

3 Experiment

Experimental Settings. DFSC is compared with 10 approaches: two tradi-
tional methods (i.e., SVM [16] and RF [3]) with 1, 168-dimensional node-level
and graph-level features from FC and SC graphs; two popular graph learning
methods with fMRI (i.e., GCN [22] and GAT [29]); two SOTA methods specifi-
cally designed for fMRI-based brain network analysis (i.e., BrainNetCNN [19]
and BrainGNN [25]); one method that considers temporal dynamics in fMRI
(i.e., STAGIN [21]); and three SOTA methods for multi-modal graph fusion
(i.e., HGNN [13], M-GCN [8] and Cross-GNN [35]). We use default config-
urations of competing methods [12] and diligently ensure their training hyper-
parameters are comparable to ours. Five-fold cross-validation is utilized. Several
metrics are used: area under ROC curve (AUC), accuracy (ACC), sensitivity
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Table 2. Results (%) of the proposed DFSC using different FSC coupling strategies.

Method AUC (%) ACC (%) SEN (%) SPE (%) BAC (%) p-value

DFSC CS 65.3(2.4) 59.9(3.1) 58.2(5.6) 62.7(7.5) 60.4(2.5) 0.0016
DFSC SR 67.4(2.7) 60.3(2.3) 57.2(8.9) 65.8(5.2) 61.5(2.4) 0.0331
DFSC 70.7(3.6) 63.5(4.0) 59.8(7.5) 69.2(4.2) 64.5(3.4) –

(SEN), specificity (SPE), and balanced accuracy (BAC). A paired t-test is used
to assess significant differences between DFSC and each competing method.

Results. Table 1 reports the results achieved by 10 competing methods and our
DFSC on ADNI and HCD datasets. From Table 1, we can observe that the DFSC
outperforms two traditional methods (i.e., SVM and RF) that rely on hand-
crafted features by a large margin. Besides, our DFSC generally yields superior
performance over two popular graph learning methods (i.e., GCN and GAT)
and three SOTA models (i.e., BrainNetCNN, BrainGNN, and STAGIN) that
only leverage single-modality information. This demonstrates the effectiveness
of integrating multi-modal brain networks for neurocognitive decline analysis.
Compared with two SOTA multi-modal methods (i.e., HGNN and M-GCN),
which do not consider interactions between FC and SC patterns, our DFSC
produces better classification performance. The possible reason is that our DFSC
can capture dynamic cross-modality dependencies while leveraging multi-view
complementary features derived from FC, SC, and FSC graphs for prediction.
In particular, Cross-GNN, which also considers inter-modality relationships (as
we do in DFSC), performs worse than DFSC in most cases. The possible reason
is that Cross-GNN fails to capture temporal variations conveyed in time series
data of fMRI, while our DFSC explicitly models such temporal dynamics.

Ablation Study. We compare the DFSC with its four degenerated variants: 1)
DFSCw/oF that only uses SC from DTI, 2) DFSCw/oS that only uses FC
from fMRI, 3) DFSCw/oC that directly integrates learned FC and SC embed-
dings, without explicitly modeling FSC coupling graphs, and 4) DFSCw/oD
without considering temporal dynamics in fMRI. Results of the five methods in
SMC vs. NC classification are shown in Fig. 2. As can be seen in Fig. 2, DFSC is
superior to its two single-modality variants (i.e., DFSCw/oF and DFSCw/oS),
verifying the necessity of utilizing multi-modality information. Besides, DFSC
outperforms DFSCw/oC that ignores interactions between FC and SC features.
This implies that modeling FSC coupling graphs can provide a complementary
view for enhanced prediction performance. Moreover, DFSCw/oD is inferior to
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Fig. 3. Visualization of top 10 discriminative ROIs identified by our method from FC,
SC, and FSC graphs in (a-c) SMC vs. NC and (d-f) ANI vs. NC classification.

DFSC in most cases, indicating that capturing temporal dynamics in FC and
FSC graphs helps improve the discriminative power of learned embeddings.

Influence of FSC Coupling Strategy. In DFSC, we calculate Pearson cor-
relation (PC) between learned FC and SC embedding to construct FSC cou-
pling graphs. We also explore cosine similarity (CS) and Spearman’s rank (SR)
correlation to measure FSC coupling strength and denote the two methods as
DFSC CS and DFSC SR respectively. Table 2 shows the results in SMC vs.
NC classification, from which we see that our DFSC using PC outperforms its two
variants. The likely reason is that PC better captures FSC coupling magnitude,
while CS measures angular similarity and SR focuses on rank-based relations.

Identified Discriminative Regions. Based on learned FC, SC and FSC graph
embeddings, we use the squeeze-excitation (SE) strategy [17] to automatically
identify contributions of ROIs to the final prediction. We visualize the top 10
discriminative ROIs identified by DSFC from FC, SC, and FSC graphs for SMC
vs. NC classification in Fig. 3 (a-c) and ANI vs. NC classification in Fig. 3 (d-f).

For SMC vs. NC classification, Fig. 3 (a-c) shows that the discriminative ROIs
located in the temporal pole are consistently detected across FC, SC, and FSC
graphs, consistent with prior research linking it to immediate recall performance
[33]. Notably, several important ROIs are highlighted in the FSC coupling graph,
such as amygdala and middle temporal gyrus, which have been proven to be
associated with SMC [7, 23]. Specifically, the amygdala is highly involved in
emotional regulation and memory modulation and middle temporal gyrus plays
a role in semantic and verbal memory [7]. Their abnormalities may contribute
to cognitive and memory concerns observed in SMC patients.

Fig. 3 (d-f) shows that, for ANI vs. NC classification, several cerebellar re-
gions (e.g., cerebellar lobule and cerebellar vermis) are consistently identified
from FC, SC, and FSC graphs, implying HIV infection can trigger cerebellum-
related dysfunction early, affecting cognition and motor functions for ANI pa-
tients [30]. From SC graphs, one can identify the abnormality in thalamus, align-
ing with prior knowledge that HIV patients exhibit structural atrophy in thala-
mus, even when achieving viral suppression under cART treatment [28]. Superior
frontal gyrus is consistently detected from FC, SC, and FSC graphs. Previous
research also suggests that HIV infection causes neuronal loss in the frontal cor-
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Fig. 4. Dynamic FSC coupling strength difference among SN, DMN, and CEN modules
with T=6 segments in (a) SMC vs. NC classification and (b) ANI vs. NC classification.

tex and induces adaptive synaptic changes [10]. These changes may affect the
prefrontal-striatal circuit, leading to executive dysfunction in ANI patients [9].

Between-Group FSC Coupling Difference. Our DFSC can model FSC
coupling matrices across T time segments. To quantitatively analyze dynamic
FSC coupling difference between patient and NC groups, we perform group-
level statistical analysis to identify significant FSC couplings. For each group, we
calculate intra- and inter-module coupling strength across 3 prominent resting-
state neurocognitive modules, i.e., salience network (SN), default mode network
(DMN), and central executive network (CEN), with results reported in Fig. 4.
Fig. 4 (a) suggests that the overall FSC coupling strength across T segments
within DMN is reduced for SMC patients. This matches prior findings that early
cognitive impairment disrupts connections within DMN [36]. Additionally, the
between-group coupling difference for inter-SN-DMN and inter-SN-CEN con-
nections is more significant than that for inter-DMN-CEN connection, implying
SMC patients exhibit abnormal SN function in mapping external stimuli and
internal mental events [24]. Fig. 4 (b) shows that ANI patients exhibit decreased
inter-module connection between SN and CEN. This could be linked to impair-
ments in executive function and attention in HIV-infected patients [4]. We also
observe SMC and ANI patients show increased FSC coupling strength within
CEN than NCs. Higher FSC coupling may reflect a compensatory mechanism in
the brain that helps prevent early neurocognitive decline, as proven by [1].

4 Conclusion

This paper presents a dynamic function-structure connectivity coupling (DFSC)
framework for neurocognitive decline analysis. Leveraging fMRI and DTI data,
DFSC first extracts modality-specific graph embeddings from fMRI and DTI,
and then learns dynamic FSC coupling graph embeddings, followed by multi-
view feature fusion for prediction. Notably, our FSC coupling graph considers
temporal dynamics in fMRI while modeling both region-specific and inter-region
dependencies between FC and SC patterns, providing a fine-grained profile of
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the interplay between brain function and structure. Extensive experiments on
two cohorts demonstrate the superiority of DFSC over state-of-the-art methods.
DFSC can identify discriminative brain regions and quantify between-group FSC
coupling differences, providing potential biomarkers for early detection. In the
future, we will extend the DFSC to model long-term FSC coupling changes
using longitudinal data for graph-based cognitive decline analysis. Additionally,
we plan to employ advanced domain adaptation techniques [11, 15] to address
the potential issue of small data, thereby improving model robustness.
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30. Wächter, C., Eiden, L.E., Naumann, N., Depboylu, C., Weihe, E.: Loss of cere-
bellar neurons in the progression of lentiviral disease: effects of CNS-permeant
antiretroviral therapy. Journal of Neuroinflammation 13, 1–13 (2016)

31. Wang, Q., Wang, W., Fang, Y., Yap, P.T., Zhu, H., Li, H.J., Qiao, L., Liu,
M.: Leveraging brain modularity prior for interpretable representation learning
of fMRI. IEEE Transactions on Biomedical Engineering 71(8), 2391–2401 (2024)

32. Waswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A., Kaiser,
L., Polosukhin, I.: Attention is all you need. In: NeurIPS (2017)

33. Wolk, D.A., Dickerson, B.C., Initiative, A.D.N., et al.: Fractionating verbal episodic
memory in Alzheimer’s disease. NeuroImage 54(2), 1530–1539 (2011)

34. Yan, C., Zang, Y.: DPARSF: A MATLAB toolbox for “pipeline” data analysis of
resting-state fMRI. Frontiers in Systems Neuroscience 4, 13 (2010)

35. Yang, Y., Ye, C., Guo, X., Wu, T., Xiang, Y., Ma, T.: Mapping multi-modal brain
connectome for brain disorder diagnosis via cross-modal mutual learning. IEEE
Transactions on Medical Imaging 43, 108–121 (2023)

36. Zhan, Y., Ma, J., Alexander-Bloch, A.F., Xu, K., Cui, Y., Feng, Q., Jiang, T.,
Liu, Y., Initiative, A.D.N., et al.: Longitudinal study of impaired intra-and inter-
network brain connectivity in subjects at high risk for Alzheimer’s disease. Journal
of Alzheimer’s Disease 52(3), 913–927 (2016)


