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Abstract. We present a method, open-source software, and experiments
which embed arbitrary deformation vector fields produced by any method
(e.g., ANTs or VoxelMorph) in the Large Deformation Diffeomorphic
Metric Mapping (LDDMM) framework. This decouples formal diffeomor-
phic shape analysis from image registration, which has many practical
benefits. Shape analysis can be added to study designs without modifica-
tion to already chosen image registration methods and existing databases
of deformation fields can be reanalyzed within the LDDMM framework
without repeating image registrations. Pairwise time series studies can
be extended to full time series regression with minimal added computing.
The diffeomorphic rigor of image registration methods can be compared
by embedding deformation fields and comparing projection distances.
Finally, the added value of formal diffeomorphic shape analysis can be
more fairly evaluated when it is derived from and compared to a baseline
set of deformation fields. In brief, the method is a straightforward use
of geodesic shooting in diffeomorphisms with a deformation field as the
target, rather than an image. This is simpler than the image registra-
tion case which leads to a faster implementation that requires fewer user
derived parameters.

Keywords: LDDMM · Diffeomorphisms · Image Registration · Shape
Analysis · Computational Anatomy · Manifold Statistics

1 Motivation

The Large Deformation Diffeomorphic Metric Mapping (LDDMM) framework[5]
is a beautiful example of advanced mathematics applied to a practical problem.
In addition to registering two images it provides a rigorous guarantee of trans-
form smoothness. Additionally, it can model real continuum mechanical prop-
erties of imaged materials[15], shape interpolate image time series of arbitrary
length[14], and provide a rigorous setting in which to conduct shape statistics[8].
While LDDMM has been substantially developed in the literature, its adoption
for practical use has not kept pace due to several barriers. For practical studies,
robust and accurate estimation of correspondence between noisy images is of



primary importance. Non-LDDMM methods are less encumbered by advanced
theoretical foundations, are less computationally complex, and their software
development has focused on features that strengthen the capacity to accurately
register noisy image data. Such features include multiple transformation models,
image matching functionals, regularization schemes, multi-scale optimization,
and fast deep learning models[18,2]. Even for studies that may benefit from using
LDDMM, the greater availability, open-source developer mind share, and docu-
mentation of non-LDDMM methods may be more appealing than the benefits of
formal shape analysis. Furthermore, deep learning has provided the community
with a new set of image registration tools that are often very fast which is an
appealing property for practical applications[6,3]. However, when test data does
not match training data these methods can perform poorly with little ability to
change their behavior other than more training, which may require a substantial
investment. Deep learning methods also rarely come with theoretical guarantees
or modeling properties such as those provided by LDDMM. This paper proposes
a method to connect the theoretical benefits of LDDMM to the practical benefits
of non-LDDMM image registration including deep learning.

Large Deformation Diffeomorphic Metric Embedding (LDDMEm) takes any
displacement vector field and solves for a nearest approximation within the
LDDMM framework. This capability effectively decouples image registration of
noisy data from shape analysis. Images can be registered with any method. Later,
shape analysis can be added to the study design without repeating the compar-
atively costly and challenging to parameterize image registrations. The effects
of shape analysis can also be more fairly evaluated, as rather than requiring a
different method entirely, they are derived from the existing study deformations.
After a brief background, the theoretical framework for LDDMEm is developed.
Synthetic and real data experiments are presented. Finally, open source LD-
DMEm code is described.

2 Background: LDDMM

LDDMM has been thoroughly described in the literature[7,12,13]. The most
relevant background materials for the present work are Vialard et al.[17], which
describes LDDMM from a Hamiltonian physics perspective and formulates an
optimal control algorithm on the initial conditions of the dynamical system,
and Singh et al.[16], which equivalently describes LDDMM from a Lie group
perspective and relaxes the Vialard shooting algorithm to optimize vector instead
of scalar valued initial momenta. LDDMM models the deformation of image
I ∈ L2(Ω,R) onto image J as a time dependent flow of diffeomorphisms. The
following augmented Hamiltonian describes the entire system, and we will go
through it term by term:

Ẽ =
1

2
||v0||2V +

1

2σ2
||I(ϕ1,0)− J ||2L2

+

∫ 1

0

⟨v̂, v −Km⟩L2dt+

∫ 1

0

⟨m̂, ṁ+ ad∗
vm⟩L2dt +

∫ 1

0

⟨Î , İ +∇I · v⟩L2dt

(1)



It is appropriate to think of the first two terms as kinetic and potential en-
ergy thus comprising the Hamiltonian itself. The kinetic energy is the norm of
velocity vector field v0 in the space V , which is defined by its inner product:
||v0||V = ⟨v0, Lv0⟩L2 = ⟨v0,m0⟩L2 = ⟨Km0,m0⟩L2 . Here, m0 = Lv0 is the mo-
mentum corresponding to velocity v0. We have also used the common notation
convention: L−1 = K. The operator L describes the assumed continuum me-
chanical properties of the spatial domain. It can be derived from real physical
properties (e.g., elasticity or viscosity) or assumed, and typically has the form
L = (a∇2 + b∇(∇·) + c)d; the only requirement is that it be self-adjoint. Intu-
itively, L penalizes the derivatives of v0, meaning smoother fields have smaller
magnitudes.

The potential energy term quantifies the disagreement between the image
I warped by a transform ϕ1,0, and the image J . Here, we write the sum of
squared differences, but any differentiable measure is acceptable. The transform
ϕ1,0 arises from a time dependent velocity flow, the integral of which establishes
particle position relationships both forward and backward in time:

(a)
dϕ0,t

dt
= v(ϕ0,t) (b)

dϕt,0

dt
= −∇ϕt,0 · v (2)

The image I is said to be observed at time t = 0. Its spatial domain flows
according to v(t). Consequently, the appearance of I at time t = 1, at the spatial
positions upon which J is sampled, is given by ϕ1,0, which maps positions from
time t = 1 to t = 0. The Hamiltonian terms are what we wish to optimize. We
would like the velocity flow ṽ(t) that yields the transform ϕ̃1,0 such that the sum
of kinetic and potential energy terms is minimal. Soon, we will constrain the
problem such that only the initial velocity ṽ0 must be found.

The terms on the second line of equation (1) are augmentations that enforce
constraints placed upon the system. The Lagrange multipliers v̂, m̂, and Î are
unconstrained. To recover the Hamiltonian, the right hand side of each inner
product must be zero at all points in space and time, i.e., those equations must
be satisfied. The first constraint is v = Km, which is always true by definition,
but including this term simplifies later calculations so it is added for convenience.
The second constraint, ∂tm = −ad∗

vm, is the most interesting and is a defining
characteristic of LDDMM. Suppose the transform ϕ̃1,0 optimally matches image
I to image J . We would like the arc length

∫ 1

0
||ṽ(t)||V dt, which via equation

(2b) terminates at the point ϕ̃1,0, to be minimal. This is precisely the definition
of a geodesic, and a geodesic is uniquely determined by its tangent vector at
t = 0. Thus, we are only required to specify ṽ0, so long as we constrain ṽ(t) to
evolve without extrinsic acceleration. Naively, one might assume that the correct
constraint would be ∂tv = 0. However, recall that the flow is assumed to be in
a continuum with mechanical properties determined by L. As particles displace,
intrinsic strain or viscous forces develop and the particles accelerate. Such forces
are proportional to the spatial derivatives of the displacement and the velocity.
The operator is thusly defined ad∗

vm = (∇v)Tm+ (∇m)v+ (∇ · v)m, and recall
m = Lv. Intuitively, we can see that ∂tm = −ad∗

vm accounts for such strain



or viscous forces through the spatial derivatives of v and m. More formally, the
definition of ad∗

vm is a special case of the Euler-Poincaré equation for the Lie
group of diffeomorphisms[1], the derivation of which is beyond the scope of this
paper. The third constraint is ∂tI = −∇I · v. This is a consequence of equation
(2b) and describes how the given image I flows along the geodesic ϕt,0.

In summary, the augmented Hamiltonian equation (1) describes the energy
of a dynamical system parameterized by an initial velocity v0. The system is
constrained to evolve along a geodesic path ending at the transform ϕ1,0. The
stationary points of this functional optimally balance the magnitude of v0 (with
respect to L) with the image matching accuracy of ϕ1,0. Given I, J , and choosing
values (a, b, c, d, σ2), which determine L and the balance between kinetic and
potential energies, we require an algorithm to determine ṽ0, or equivalently m̃0,
which minimizes (1). A gradient descent algorithm can be obtained by taking
the variation of (1) with respect to the flows v, I, v̂, m̂, and Î with the following
result:

∂m0
Ẽ = Km0 − m̂0 (3)

˙̂m = (∇v)m̂− (∇m̂)v + v̂ m̂1 = 0
˙̂
I = −∇ · (Îv) Î1 = I(ϕ1,0)− J

Lv̂ = Î∇I − ad∗
m̂m

(4)

Equation (3) requires m̂0 which can be obtained by integrating the system (4)
backward in time.

3 Methods: LDDMEm

LDDMEm replaces image matching with displacement vector field matching.
The potential energy term ||I(ϕ1,0)−J ||2L2 is replaced with a similar term acting
directly on vector fields: ||ϕ0,1 − ϕ∗||2L2 for the given field ϕ∗. Also, the third
Lagrangian constraint

∫ 1

0
⟨Î , İ +∇I · v⟩L2dt is replaced with the construction of

the flow of transforms itself, namely equation (2a):
∫ 1

0
⟨ϕ̂, ϕ̇ − v(ϕ)⟩L2dt. This

results in the augmented Hamiltonian:

Ẽ =
1

2
||v0||2V +

1

2σ2
||ϕ0,1 − ϕ∗||2L2

+

∫ 1

0

⟨v̂, v −Km⟩L2dt+

∫ 1

0

⟨m̂, ṁ+ ad∗
vm⟩L2dt +

∫ 1

0

⟨ϕ̂, ϕ̇− v(ϕ)⟩L2dt

(5)

With these changes we proceed taking variations as before to obtain a gradient
descent algorithm with the following result:

∂m0
Ẽ = Km0 − m̂0 (6)

˙̂m = (∇v)m̂− (∇m̂)v + v̂ m̂1 = 0
˙̂
ϕ = −(∇v)T ϕ̂ ϕ̂1 = ϕ0,1 − ϕ∗

Lv̂ = −|∇ϕt,0| · ϕ̂(ϕt,0)− ad∗
m̂m

(7)



Comparing (7) to (4) we see the differences. The adjoint variable Î is replaced
with ϕ̂ whose backward integration is an advection along v. In the v̂ equation, Î
is replaced with ϕ̂ pulled from t = 0 to the current time. This pull of ϕ̂ is a re-
flection of the choice to model ϕ∗ as ϕ0,1 instead of ϕ1,0. Since LDDMM entails
the construction of both the forward and inverse transform flows, but we are
given only one target transform, we are free to choose between the forward and
inverse transform to compare to the given field. We chose ϕ0,1 because equation
(2a) is more numerically stable than equation (2b). This system is optimized in
the same way as the image matching case returning an initial momentum m̃0

which determines a geodesic of transforms that passes through ϕ∗. With this
embedding, the geodesic trajectory implied by ϕ∗ can be interpolated, extrapo-
lated, or averaged with other geodesics to study the deformation(s) in a formal
shape space.

One interesting property of this formulation is that, unlike the noisy image
matching case, the use of sum of squared differences to compare ϕ0,1 and ϕ∗ is
not only the simplest option but also sufficiently general since by definition the
values of ϕ0,1 and ϕ∗ are directly comparable. Another interesting property is
the comparison to point matching formulations[11]. If ϕ∗ is viewed as a dense
set of coordinate matches, then LDDMEm is the generalization of point match
based LDDMM methods to an infinite number of points, or more practically, a
point match for every sample location.

4 Experiments

4.1 Synthetic

Two-dimensional synthetic experiments were designed to validate the ability of
LDDMEm to embed displacement vector fields from multiple sources. Addition-
ally, these experiments demonstrate one potential advantage of formal shape
modeling: extrapolation accuracy. We begin with a smoothed image of an el-
lipse. A synthetic initial momentum field was generated and integrated to pro-
duce a geodesic of shape deformation sampled at time points t = {0, 1, 2, 16}.
The shape at t = 0 (the ellipse) was registered as the moving image to the shape
at t = 2 using three different commonly used packages: simpleITK[18], ANTs[2],
and the pre-trained VoxelMorph SynthMorph shapes model[9]. These transforms
were naively interpolated/extrapolated to the unseen time points t = {1, 16} by
multiplying the whole field by the appropriate scaling factor. The transforms
were also embedded in the LDDMM framework with LDDMEm yielding ini-
tial momenta that integrate to close approximations of the given transforms at
t = 2. These geodesics were integrated to the unseen time points t = {1, 16}
and compared to the naive interpolation/extrapolation results from scaling the
given transforms directly. The results are presented in figure 1.

All three registration methods aligned the ellipse to the t = 2 shape accu-
rately, with only a slight residual remaining in the VoxelMorph case. LDDMEm
embedded all transforms accurately, reproducing them at sub-voxel accuracy.



For interpolation to t = 1, both the naive scaling and LDDMM geodesic integra-
tion methods were accurate. However, for extrapolation to t = 16, integration of
the initial momentum produced a closer shape match than naive scaling in all
three cases.

4.2 ADNI 2

To test LDDMEm on real samples we used a set of 350 subjects from the
Alzheimer’s Disease Neuroimaging Initiative phase 2 dataset (ADNI-2)[4]. For
each subject we have four scans: screening, and 6-month, 12-month, and 24-
month follow up times. The same three registration methods were used, how-
ever for these experiments we switched to the dense-brain-T1-3d-mse-32feat pre-
trained VoxelMorph model, which was specifically trained for registration of T1
MRI volumes like the ADNI-2 data we study here. For all samples, and all regis-
tration methods, we registered the screening scan as the moving image to the 12-
month follow up scan. These transforms were naively interpolated/extrapolated
by multiplying by the appropriate scaling factor to estimate the anatomy at the
6-month and 24-month time points. The transforms were also embedded using
LDDMEm to obtain initial momenta parameterizing geodesic flows of trans-
forms. These geodesics were integrated to estimate the anatomy at the 6-month
and 24-month time points. The results are presented in Figure 2.

Curiously, for all three registration methods, the LDDMEm embedded trans-
form matched the screening image to the 12-month image more accurately than
the given transform, despite having never seen either image. We hypothesize
this to be the effect of additional regularization, but have not yet determined
an exact reason. The extrapolation effect observed in the synthetic experiments
is only present for the ANTs transforms, albeit with a very small effect size.
It may be that the time intervals used are too short to observe the improved
extrapolation of geodesic modeling. We are interested to see how a registration
to the 3-month image extrapolates with LDDMEm to longer time points such
as 36-months. These experiments are ongoing and are not presented here.

5 Software

LDDMEm is available as an open source Python package at:
github.com/GFleishman/lddmem. At the time of writing, the package contains
three modules: main, epdiff, and cli. The main module contains the function
lddmem which is the primary method for embedding a transform. The func-
tion supports multi-resolution optimization in both space and time, masking to
ignore regions of fields that should not be matched, automatic convergence cri-
teria, and other helpful features. The main module also contains the function
forward_integration which can be used to integrate an initial momentum to
any time point. The epdiff module contains implementations of essential opera-
tors including L, K, advm, and ad∗

vm. Finally, the cli module is a command line
interface for calling main.lddmem. Future plans include offering Simple Geodesic
Regression[10] and Principal Geodesic Analysis[8].

https://github.com/GFleishman/lddmem
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Fig. 1. Synthetic experiment results: LDDMEm successfully embeds transforms from
three commonly used image registration packages and extrapolates shape change with
greater accuracy. Target images in red, aligned images in green.
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Fig. 2. ADNI2 experiment results: LDDMEm successfully embedded transforms gen-
erated from real data (upper left panel). Curiously, for all three registration methods,
the LDDMEm embedded transforms align the original two images more accurately,
with the largest differences observed for VoxelMorph (perhaps due to increased regu-
larization, which can be seen visually in the upper left panel). The improved geodesic
extrapolation observed for the synthetic data is only observed here for ANTs, albeit
with a very small effect size.
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