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Abstract. To address the challenge of few annotated datasets for train-
ing brain magnetic resonance imaging (MRI) segmentation models, we
propose to use voxel-level brain age prediction as a domain-specific pre-
text task for self-supervised learning before adapting models to a segmen-
tation downstream task. We combined publicly available T1-weighted,
normative brain MRI datasets to create a large (N = 1,710), represen-
tative dataset with a balanced distribution across age groups and sexes,
minimizing potential biases in our model. We then compared three state-
of-the-art architectures, Swin UNETR, UNETR, and UNET, on the
voxel-level brain age prediction pretext task. Swin UNETR achieved the
best performance with a mean absolute error (MAE) of 5.9 ± 4.4 years,
outperforming UNETR (MAE: 7.2 ± 4.4 years) and UNET (MAE: 6.2
± 4.2 years). Based on this performance, we selected Swin UNETR for
a brain MRI segmentation downstream task to evaluate the effective-
ness of the voxel-level brain age prediction as a self-supervised learning
pretext task. We fine-tuned it and compared its performance against
two baselines: (1) training from scratch and (2) fine-tuning a model pre-
trained on an image inpainting task, a non-domain-specific pretext task.
The Swin UNETR model pre-trained on voxel-level brain age predic-
tion achieved the highest Dice coefficient on an out-of-distribution test
set and performed comparably to the inpainting-pretrained model on
an in-distribution test set. These results demonstrate the potential of
voxel-level brain age prediction as a domain-specific pretext task for
self-supervised learning in neuroimaging, improving segmentation per-
formance, especially in challenging, low-data scenarios.

Keywords: Brain age prediction · Segmentation · Self-supervised learn-
ing · Swin UNETR.

1 Introduction

Data scarcity is a significant challenge in training Deep learning (DL) models,
particularly in fields like medical imaging, where labelled data is often limited
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due to the time-intensive nature and expertise required to annotate the images.
Since most DL frameworks rely on supervised learning, they require substan-
tial amounts of annotated data to learn meaningful representations effectively.
Given the difficulty of manual annotation, self-supervised learning (SSL) has
gained traction as an alternative paradigm for feature learning [26]. SSL leverages
pretext tasks such as solving jigsaw puzzles, memorizing spatial relationships,
predicting image rotations, and restoring missing regions to extract meaningful
representations from unlabeled data. Recent advancements in SSL have focused
on masking and restoring image patches as a learning strategy. Masked Autoen-
coder pretrains Vision Transformers (ViTs) by randomly masking image regions
and predicting the missing content, a technique known as masked image modeling
(MIM) [12]. Kim et al. [12] applied this concept to Swin Transformers, demon-
strating their effectiveness in learning visual features without requiring extensive
labeled datasets. While SSL pretext tasks such as inpainting have proven effec-
tive in computer vision for pre-training models to extract generalizable features,
their direct application to 3D medical imaging remains challenging. To address
this, designing domain-aware pre-training tasks is crucial to ensure models learn
meaningful medical-specific features rather than irrelevant patterns [12]. There-
fore, we propose leveraging voxel-level brain age prediction [18,8] as a pretext
task. Since aging is a universal and inevitable process, and the widespread avail-
ability of age information in many normative neuroimaging datasets makes it
a valuable proxy for learning meaningful brain representations. This approach
builds upon the assumption that, for healthy individuals, brain age is equal to
the chronological age [6]. However, this assumption does not apply to individuals
with underlying neurological disorders such as Alzheimer’s disease, depression,
and schizophrenia, where an accelerated aging pattern is often observed and
considered as an effective biomarker of developing neurological disease [8].

Aging is characterized by the gradual decline of physiological functions due
to the accumulation of cellular damage over time [8]. Brain aging affects cog-
nitive function and overall well-being, making it essential to study its patterns
in healthy individuals and correlate them with the onset of mental disorders
for early detection and intervention [8]. Unlike traditional pretext tasks such as
image inpainting [12,5], brain age prediction focuses on detecting subtle struc-
tural changes in the brain associated with aging, which may enhance the model’s
ability to extract relevant features for other neuroimaging tasks. Therefore, we
hypothesize that the voxel level brain age prediction can serve as an effective
domain-specific pretext task for self-supervised learning in brain MRI segmenta-
tion tasks, enabling models to learn meaningful anatomical representations that
enhance performance on downstream tasks.

Our objective is to investigate voxel-level brain age prediction as a domain-
specific pretext task and analyze its adaptation to a brain segmentation down-
stream task, particularly in data-scarce scenarios. To achieve this, we explore
established architectures, such as the UNET[19], and more modern transformer
architectures that leverage self-attention mechanisms to capture long-range spa-
tial dependencies [23,9]. Transformers have demonstrated strong performance in
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various medical imaging applications [23,9], but not in the context of voxel-level
brain age prediction. which has the potential to enhance feature extraction and
improve the understanding of complex structural changes associated with brain
aging. The main contribution of this paper is to show that voxel-level brain age
prediction can serve as an effective SSL pretext task for brain MRI segmentation.

2 Methods

Fig. 1. Flowchart of the proposed methodology. The input to the DL model is a skull-
stripped T1W MRI. The model is originally pre-trained on the pretext task of voxel-
level brain age prediction. Then, the output layer of the pretrained model is replaced
by a segmentation task prediction layer, and the model is fine-tuned.

2.1 Proposed Methodology

Our proposed methodology consists of two stages (Fig. 1): (1) pretaining the
model on the voxel-level brain age prediction task; and (2) Replacing the model
prediction layer, and fine-tuning the model for the brain MRI segmentation task.

Voxel-level brain age prediction pretext task: Voxel-level brain age
prediction provides insights into the different aging patterns of various brain re-
gions in healthy and diseased conditions, allowing for a more fine-grained anal-
ysis of neurodegenerative processes. To our knowledge, only two studies have
implemented this approach. Popescu et al. [18] adapted a 3D U-Net, originally
designed for segmentation, to predict localized brain age, capturing spatial pat-
terns of brain aging. However, their model required white matter and gray matter
segmentation as inputs to their model. Therefore, their approach is not suitable
for SSL pretaining since it requires segmentation. Building upon this, Gian-
chandani et al. [8] extended the U-Net model to incorporate multitask learning,
integrating segmentation and global-level brain age prediction tasks in addition
to the voxel-level brain age prediction. Since their model also requires segmen-
tation masks for training, it is not suitable for SSL pre-training. We propose



4 T. Nasser et al.

an approach similar to [8], but our model only has the voxel-level brain age
prediction task. The rest of the model details follow the exact details as in [8].

Segmentation downstream task: To adapt the model pre-trained on the
pretext task, we replaced the voxel-level brain age prediction output layer with a
new output layer that accommodates the segmentation output requirements, and
we fine-tuned the entire model. While investigating different ways to adapt the
pre-trained model to the downstream task, we attempted to freeze the encoder
and train only the decoder and output layers and train only the output layer.
However, these approaches resulted in poorer performance than training the
entire model with a low learning rate.

2.2 Baselines for Comparison

Training from scratch: This baseline for comparison corresponds to tradi-
tional supervised learning, where the model is trained from scratch using varying
amounts of training data as it will be described in the experiments section.

Image inpainting as a pretext task: Self-supervised learning presents a
promising solution to the challenges posed by limited annotated data in medical
imaging. To ensure a fair comparison between a well-established, non-domain-
specific task and our domain-specific voxel-level brain age prediction, we se-
lected image inpainting, which is a widely used technique that enables models
to reconstruct missing or occluded regions by leveraging contextual informa-
tion from surrounding areas. This process enhances the model’s understanding
of image structures, improving its performance in downstream tasks such as
segmentation[4].

In this study, we build upon previous works [4,22] by implementing a struc-
tured inpainting strategy with a random sampling approach for mask generation,
ensuring diverse missing regions across training samples. To simulate missing
voxel regions, we applied coarse dropout, introducing 12 “holes” of size 32×32×32
within each input volume. This dropout covered 15% of the total input space,
with input image dimensions set to be patches of dimensions 128×160×128.
By reconstructing these occluded regions, the model learns to capture spatial
dependencies more effectively, facilitating robust feature extraction from brain
MRI scans. To enhance reconstruction quality, we incorporated perceptual loss
using AlexNet [25] as our loss function. This approach leverages feature-space
representation to refine inpainting predictions, improving the model’s ability to
reconstruct missing regions more accurately. These enhancements contribute to
more meaningful and informative representations, which are particularly valu-
able in medical imaging applications, where precise feature learning is critical
for downstream tasks such as segmentation and classification.

2.3 Datasets

We compiled a dataset of normative T1-weighted MRI scans from individuals
aged 18 to 80 obtained from multiple publicly available datasets. These include
the Consortium for Reliability and Reproducibility (CORR) (https://fcon_

https://fcon_1000.projects.nitrc.org/indi/CoRR/html/
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1000.projects.nitrc.org/indi/CoRR/html/) [27], the Information eXtraction from
Images (IXI) dataset (https://brain-development.org/ixi-dataset/), the Autism
Brain Imaging Data Exchange (ABIDE I and II) (https://fcon_1000.projects.
nitrc.org/indi/abide/) [3,2], the Open Access Series of Imaging Studies (OASIS-
1) (https://sites.wustl.edu/oasisbrains/home/oasis-1/) [14], the Alzheimer’s
Disease Neuroimaging Initiative (ADNI)[11,16,17] (https://adni.loni.usc.edu/),
the Cambridge Centre for Ageing and Neuroscience (Cam-CAN) (https:
//camcan-archive.mrc-cbu.cam.ac.uk/dataaccess/) [20,24], Calgary Campinas
dataset (https://sites.google.com/view/calgary-campinas-dataset/home) [21],
and the Calgary Normative Study [15]. To ensure that the models during pretext
training learn appropriate representations across all age and sex groups, we care-
fully curated the dataset to be well-balanced, maintaining an equal distribution
of demographic variables across the training, validation, and testing sets. This
step was critical in preventing model bias toward any particular group, ensuring
fair and reliable predictions across the entire population.

The dataset used to train the pretext task, either voxel-level brain age pre-
diction or image inpainting, consists of 1,710 MRI scans. These were divided
into 1,025 samples for training, 428 for validation, and 257 for testing. For the
segmentation downstream task, a second dataset combination was used, where
training was conducted on three different subsets containing 78, 52, and 26 sam-
ples, respectively, while the validation and testing sets each contained 52 sam-
ples. Similar to the data used for training the pretext task, we ensured that
this dataset maintained a balanced distribution across age and sex groups, al-
lowing the segmentation model to generalize well across different demographics.
To further evaluate the segmentation model’s robustness, we tested it on an in-
dependent dataset not used during training, consisting of 127 MRI scans from
OASIS-2 (https://sites.wustl.edu/oasisbrains/home/oasis-2/) [13]. This out-of-
distribution test set was specifically included to assess the model’s ability to
generalize to previously unseen data from a different population and imaging
protocol, providing insight into its real-world applicability.

Since some of the datasets used in this study contain longitudinal data, ad-
ditional precautions were taken to prevent potential biases in model predictions.
To mitigate the risk of data leakage and model overfitting, only a single time
point was used per individual, ensuring that all models were trained and eval-
uated on independent samples. There was no data overlap across samples used
for pretext and downstream tasks training and testing.

To ensure consistency across datasets, we preprocessed the data. All images
were converted to NIfTI format, resized to a 256×256×256 voxel grid and resam-
pled to 1 mm isotropic. We used SynthStrip [10] to obtain skull-stripped images
and SynthSeg [1] to obtain the brain MRI segmentation labels. Visual inspection
was performed and samples with poor segmentation quality were excluded from
the data. Table 1 summarizes the data used in this work.

https://fcon_1000.projects.nitrc.org/indi/CoRR/html/
https://fcon_1000.projects.nitrc.org/indi/CoRR/html/
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Table 1. Summary of the datasets. For the segmentation downstream task, we had an
additional out-of-distribution (OOD) test set.

Task Train Validation Test OOD Test
Pretext 1,025 428 257 -

Segmentation 78/52/26 52 52 127

2.4 Experiments

Ablation study: We initially performed an ablation study to search for the best
architecture for the voxel-level brain age prediction task. We compared three
commonly used architectures: UNET, UNETR, and Swin UNETR. UNET was
chosen due to its extensive use in medical image analysis and prior application to
this problem [8,7,18]. To explore the potential of transformer-based architectures,
we included UNETR and Swin UNETR, which leverage self-attention mech-
anisms to capture long-range dependencies and hierarchical features [9,23,12].
Our goal was to identify the best-performing model for voxel-level brain age
prediction as a pretext task, which would then be fine-tuned for segmentation to
benefit from its pre-training. For training, we followed the procedure described
in [8]. We used the Adam optimizer with a learning rate of 1e-3 and weight decay
of 1e-4. A StepLR scheduler was applied, with a step size of 150 epochs for Swin
UNETR and 70 epochs for UNET and UNETR, both using a decay factor of
γ = 0.6. All models were trained for 600 epochs. Mean absolute error (MAE)
and the coefficient of determination (R2) were used to evaluate the results of the
different architectures.

Segmentation Task: We trained Swin UNETR, the best-performing model
from the voxel-level brain age prediction task (see Table 2), for segmentation
using ground truth labels of 32 brain structures generated by SynthSeg[1] as
a proof of concept. To ensure reliability, visual inspection was conducted, and
poor segmentations were excluded. To evaluate the impact of pre-training, we
compared a model trained from scratch, a model pre-trained on inpainting, and
a model pre-trained on voxel-level brain age prediction as a domain-specific
pretext task. The analysis was conducted across different training set sizes (78,
52, and 26 volumes). We validated and tested the model on 52 samples each
from the in-distribution dataset. To ensure that training the pretext task and
segmentation models on this diverse combination of publicly available datasets
leads to a robust and generalizable model, we included an independent (out-of-
distribution) dataset of 127 samples for further evaluation. During fine-tuning,
we applied a low learning rate to preserve the pre-trained features while allowing
the model to adjust to the new task. Specifically, we used the Adam optimizer
with a learning rate of 1e-3 and a weight decay of 1e-4, along with a StepLR
scheduler configured with a step size of 70 epochs and a decay factor of 0.6. The
model was fine-tuned for 200 epochs with early stopping, leveraging the learned
voxel-level brain age prediction or the inpainting representations to enhance
segmentation performance. All models were trained using the cross-entropy loss
function, and their performance was evaluated using the Dice score metric.
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3 Results and Discussion

The results for the voxel-level brain age prediction ablation study are reported
in Table 2. The Swin UNETR model obtained the lowest MAE error, followed
by the UNET and the UNETR models. The Swin UNETR and UNET models
obtained the same R2 score. This is an interesting finding since past voxel-level
brain age prediction works used the UNET architecture [18,8].

Table 2. Voxel-level brain age prediction task results.

Model MAE (years) R2

UNET 6.15 ± 4.2 0.84
UNETR 7.17 ± 4.4 0.81

Swin UNETR 5.86 ± 4.4 0.84

For the segmentation downstream task, we selected the Swin UNETR archi-
tecture based on our ablation study results. The segmentation results for the
Swin UNETR model trained from scratch, pre-trained on the inpainting or the
voxel-level brain age prediction pretext task for different amounts of training
data are summarized in Fig. 2, and sample segmentation masks are shown in
Fig. 3. In the in-distribution test set, all models perform similarly when trained
on 78 samples, but the model trained from scratch achieved a slightly higher Dice
score. However, when the models were trained with 52 or 26 samples, both pre-
trained models (inpainting and voxel-level brain age prediction) outperformed
training from scratch. The model pre-trained on inpainting outperformed the
model trained on voxel-level brain age prediction on the in-distribution test set
when the model was trained on 52 and 78 samples. In contrast, with only 26 train-
ing samples, the model pre-trained on voxel-level brain age prediction achieved
a slightly higher Dice score than the model pre-trained on the inpainting, high-
lighting the advantage of domain-specific pre-training in low-data scenarios.

All models were evaluated on an out-of-distribution test set. While the model
pre-trained on the inpainting task performed the worst at 78 training samples,
the model trained from scratch achieved the highest score. However, as the train-
ing set size decreased to 52 and 26 samples, the brain age pre-trained model
consistently outperformed all other models on the out-of-distribution test set.
These results underscore the effectiveness of domain-specific pre-training in low-
data scenarios and demonstrate that training on a diverse, publicly available
normative T1-weighted dataset enhances the model’s generalization capability.

One limitation of this study is the use of SynthSeg-generated segmentation
labels as ground truth. To mitigate this, we visually inspected and excluded poor-
quality segmentations. Despite this limitation, SynthSeg labels were suitable
for this proof-of-concept study, as our primary goal was to demonstrate the
importance of domain-specific pre-training. In future work, we plan to use expert-
annotated segmentation labels to validate our results on more accurate ground
truth data. Additionally, we aim to develop new domain-specific pretext tasks
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and compare their effectiveness to voxel-level brain age prediction in improving
segmentation. This study underscores the need for task-specific SSL approaches
in medical imaging, particularly in data-limited settings.

Fig. 2. Segmentation performance (Dice score) across different training set sizes for
models trained from scratch, pre-trained on inpainting, and voxel-level brain age pre-
diction. In-distribution (left) and out-of-distribution (right) test set results.

Fig. 3. Comparison of segmentation outputs for representative samples of the in-
distribution test set for the models developed with 52 samples.

4 Conclusion

This study demonstrated the effectiveness of voxel-level brain age prediction as
a domain-specific pretext task for self-supervised learning in neuroimaging. Our
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results show that Swin UNETR, pre-trained on voxel-level brain age predic-
tion, outperforms models trained from scratch and those pre-trained on inpaint-
ing in brain segmentation tasks, particularly in low-data scenarios and out-of-
distribution data. These findings highlight the potential of brain age prediction
for improving downstream medical imaging tasks.
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