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Abstract. The presence of interictal epileptiform discharges (IEDs) in
electroencephalogram (EEG) recordings is a critical biomarker of epilepsy.
Even trained neurologists find detecting IEDs difficult, leading many
practitioners to turn towards machine learning for help. Although deep
learning algorithms have shown state-of-the-art accuracy on this task,
most models are uninterpretable and cannot justify their conclusions.
Absent the ability to understand model reasoning, doctors cannot lever-
age their expertise to identify incorrect model predictions and inter-
vene accordingly. To improve human-model interaction, we introduce
ProtoEEG-kNN, an inherently interpretable IED-detection model that
follows a simple case-based reasoning process. Specifically, ProtoEEG-
kNN compares input EEGs to samples from the training set that contain
similar IED morphology (shape) and spatial distribution (location). We
show that ProtoEEG-kNN can achieve state-of-the-art accuracy while
providing visual explanations that experts prefer over existing approaches.
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1 Introduction

Epilepsy, a chronic neurological disorder characterized by recurring seizures, af-
fects approximately 50 million people worldwide [24]. Epilepsy significantly im-
pairs quality of life, increases risk for injuries, and reduces life expectancy when
inadequately managed. To diagnose epilepsy, clinicians look for electrophysio-
logical events known as interictal epileptiform discharges (IEDs) in electroen-
cephalogram (EEG) recordings. However, identifying IEDs among benign varia-
tions in brain activity is difficult, with disagreement being common even among
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trained neurologists [10]. To aid epilepsy diagnosis, clinicians and researchers
have recently turned to deep learning models [3]. However, despite recent jumps
in model accuracy, many of these models remain uninterpretable — providing
no insight into how decisions are made. This paradigm is problematic because
when a practitioner disagrees with a model, there is no way to check the model’s
reasoning for validity.

In contrast, interpretable models — models designed to explain the reasoning
behind their decisions — allow practitioners to assess model predictions and incor-
porate machine learning insights into the diagnostic process. One such model is
the Prototypical Part Network (ProtoPNet) [2], a family of interpretable neural
networks that achieve accuracy on par with black box models. However, exist-
ing ProtoPNets are ill-equipped to handle the unique challenges of the EEG
domain. Specifically, they are unable to handle uncertain labels, cannot capture
the complex interplay between spatial relationships (location) and morphological
patterns (shape) that characterize IEDs [16,12], and struggle to learn semanti-
cally meaningful prototypes due to the extreme variability among IEDs.

To address these challenges, we introduce ProtoEEG-kNN, an interpretable
IED-detection model that achieves state-of-the-art accuracy. Our model learns
an effective EEG comparison space by training a ProtoPNet with a new similar-
ity metric that incorporates selected interpretable statistical features (ISFs) and
specialized spatial reasoning. Once this space is learned, we alter ProtoEEG-
kNN to use k-Nearest Neighbors (kNN) reasoning over these learned embed-
dings, providing intuitive comparisons of the form “This IED-containing EEG
looks like these IED-containing EEGs,” (Fig. 1 (Top)) with coverage over the
extreme diversity of IEDs. Specifically, our contributions are: (1) We adapt Pro-
toPNet into a kNN based probabilistic classification model and update the loss
terms to reflect training under uncertain labels. (2) We define a new similarity
metric that aligns our model’s notion of EEG similarity with clinical practice
by capturing both spike morphology and spatial distribution patterns. (3) We
use channel masking to calculate channel-wise weights that allow the model to
prioritize computations on medically relevant channels while revealing the spa-
tial focus of the model’s attention across the EEG. Our code is available at:
https://github.com/DennisTang2000/ProtoEEG and data was released in [14].

2 Related Works

There has been a dramatic increase in interest in IED detection using machine
learning models [3], resulting in a wide variety of uninterpretable predictive
approaches. Generally, IED detection operates at either the channel-level [4,7,
20] or by analyzing entire EEGs at once [11,13, 21].

In computer vision, a large body of work has emerged around interpretable
neural networks, based on the Prototypical Part Network (ProtoPNet) [2]. Pro-
toPNet provides an interpretable alternative to traditional neural networks by
forming predictions using a series of comparisons to learned prototypical parts.
A ProtoPNet can explain its predictions by saying “this image is of class A be-
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Fig. 1: Top: ProtoEEG-kNN reasoning. The topographic map (“topoplot”) high-
lights important channels as calculated by the channel-wise weights (w.(x)),
which are also shown in bars to the left of the input channels. From left to right,
we show the input sample, the best two matches selected by our model, and the
best matches chosen by each of three ablated models. Middle: ProtoEEG-kNN
architecture. An input is passed through the backbone f to produce a embedding.
The Global Comparison Layer g computes the similarity between the embedding
and each sample in the training set. The final prediction produced by h is the
average label from the top-k most similar neighbors. Bottom: Channel-Wise
Similarity Calculation. The similarity along each channel combines the latent
and ISF similarities and then multiplies by w.(x).

cause it looks like this prototype from class A”. Of particular interest to this
work, Ukai et al. [22] introduce ProtoKNN, which performs kNN-style classifi-
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cation over the vector of prototype similarities. This is different from our kNN
approach which computes a specialized similarity metric between an input and
every training sample. Several papers have applied ProtoPNet style reasoning
to IED detection [5,6,19]. Gao et al. [6], introduces Multi-Scale Prototypical
Part Network for patient-specific seizure prediction, while Gao et al. [5] extends
this work to cross-patient prediction. However, both are limited to single chan-
nel comparisons, thus failing to consider the spatial distribution of spikes, an
important factor in how experts identify IEDs [16,12]. In Tang et al. [19] pro-
totypes represent full EEGs, but convolve every channel together which keeps
their model from providing channel-level interpretability. Other papers, such as
Lopez et al. [15] and Ozcan et al. [17] apply post-hoc methods to explain black-
box TED detection models, but these explanations are not necessarily faithful to
how a model actually makes decisions, and may be misleading [1, 18].

3 Methods

Notation and Setup. We denote our training dataset D := {x;,; })¥,, where
x; € RO*T ( is the number of channels in the EEG and T is the length (1
second sampling 128 Hz), and y; € {0/v,1/v,...,1} (in our case, v = 8). We
treat this as a probabilistic classification problem because expert annotators
often disagree on labels for this task (in 80.68% of samples in our dataset).

Our model architecture is inspired by that of ProtoPNet [2], and we train a
specialized ProtoPNet to shape the latent space before replacing the learned pro-
totype layer with a kNN module. During training, the architecture of our model
consists of a feature extraction backbone f : REXT — REXC followed by proto-
type layer g : REXY — RM | and a final class-connection layer h : RM — [0, 1].
Here, L and M are the latent dimension and number of prototypes respectively.
For our backbone f, we use Spikenet, a pre-trained IED classification model. We
remove SpikeNet’s classifier head and alter the convolution layers to not convolve
across EEG-channels, producing embeddings with C' separated channels. At the
end of training, we replace g and h with kNN style-components g and h, which
involves creating a prototype for every training sample and setting M = N. This
results in the architecture shown in Fig. 1 (Middle).

Next, we introduce the novel features of our model: a new similarity metric
that leverages ISFs, channel-wise weights, and a kNN layer.

ISFs and Prototype Similarity. Traditional ProtoPNets compare inputs to
prototypes by computing their cosine similarity in latent space. For our model,
we define each prototype p; € RELXC from our set of prototypes P, :={p, }Jj\il in
layer g to represent a complete, 37-channel EEG, and we denote channel ¢ in pro-
totype j with p; . € R%. To produce more semantically meaningful comparisons,
we augment ProtoPNet’s cosine similarity with additional comparisons between
three ISFs that were selected based on domain expert feedback: the range, vari-
ance, and fast fourier transform (FFT) of each channel. These comparisons are
then aggregated across channels with a weighted sum into an overall channel
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similarity. We introduce three learnable parameter tensors associated with each
prototype p;: p;*"’° € R, p;"" € R¢, and pgﬁ € RE*T, where each entry
along the C' dimension corresponds to the relevant statistic computed over each
channel. This yields four similarity terms: sl@tent grange gvar and st where
the superscript defines which set of features the similarity scores are computed
along. We define the four similarities between input ¢ and prototype j for a single
channel c as:

el fexa)llzllpsell2” Y pT = T (i) |2 + €
var _ 4 Var(x;.) — Var(p}’:lcr) range _ 1 _ R(x;.c) — R(p;’:lcnge)
e Vmaz - szn +e€ 7 e Rma:v - Rmzn +e€ ’

where f.(x;) € RY denotes the the c-th channel of the latent representation of x;,
Var(-) is the variance, R(-) is the range, F'T(-) is the fourier transform, e and cg
are constants for numerical stability, and Viin, Vinaz, Bmin, and Ry,q. denote the
minimum variance, maximum variance, minimum range, and maximum range
across all channels in the training set respectively. An overall similarity score
between two channels is calculated as: 5757 = A si@femt 4 Xy 579 4+ X379 +

;¢ i,J,¢ i,
t
)\48?;-)@ where A; := sm(\], Ay, A5, \)) for learned parameters Aj, A5, A5, A, and

sm denotes the softmax function.

Channel-wise Weights. To focus the model’s similarity comparisons along
relevant channels and to provide channel-level interpretability, we calculate a
channel-wise weight for every channel in the input. We use a leave-one-channel-
in masking approach and define the weight function w. : R®*T — R such

that wc(xi) = %a@c(xi) = hspikenet(f([0671XT;Xi,c;0C7CXT))3 Where

f is the backbone, hgpikener is the classifier head of SpikeNet, 04%F denotes an
A x B dimensional matrix of zeroes, and ; indicates concatenation. Since each
weight w.(x;) assigns a relative importance to the similarity score along channel
¢, an overall similarity score between input ¢ and prototype j is calculated:
g;(f(xi)) = 25:1 wc(xi)sg”?fg“” (Fig. 1(Bottom)). Given our similarity function,
we focus next on model training.

Weighted Loss Terms. We train our model to produce well calibrated pre-
dictions with binary-cross entropy loss Lyce = —y;log(9;) — (1 — y;) log(1 — ;)
where y; is the vote proportion. This way, we can retain the primary function of
IED-classifcation with the added benefit of calibrating our model to also match
the vote proportions.

Moreover, we adapt the loss terms (Cluster, Separation, Orthogonality) from
vec(p;)-vec(p;r)
lvec(p;)l2llvec(p;/)ll2
denote the cosine similarity between two prototypes, where vec(p,) denotes the

ProtoPNet to handle uncertain labels. Let cos(pj, p;/) :=
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vectorization of p;. We define the loss across a batch as:

M M
1
Lortho = Z Z l[jfj/}COSQ(pﬁpj Z Z 1[];&] ]COS p?f 7p§3€ ) »

j=14'=1 j=1j'=1
1 B

Lest = B chlaﬁ%}?) yigy (f(x4)),

Lsep = Bzgg ) - |class (j*) — yi|, where j* = argmax g;(f(x;)),

juclass(j)#y;

where 1[; denotes the indicator function, class (j) € [0, 1] is the class associated

with prototype j, and B is the batch size. Cluster and separation losses are
adapted to scale based on the sample labels: cluster is higher for samples with
higher vote proportions and separation is higher when vote proportions are wider
apart. Finally, we add a regularization 1oss Lcoefreg = A1 — min(Aa, Az, A1) to
train balanced coefficients for ISFs.

We minimize the overall loss function Loyerair := K1 Lbce +52Lortho (3L clst +
kaLlsep + K5LCocfReg, Where each k is a scalar hyperparameter, using Adam
optimization. We denote the model h o g o f as “EEG ProtoPNet” and train
according to the regime described in [2] to produce a well-structured latent space
when combined with our ISFs. Training lasted 200 epochs and stopped early if
validation accuracy did not improve for two consecutive project epochs.

kNN Replacement Step. After EEG ProtoPNet training converged, we re-
placed the learned prototype layer g with a Global Comparison Layer g : REXC —
RY and the linear layer h with a kNN comparison layer h : RN — [0, 1]. This
is our final model, “ProtoEEG-kNN.” The Global Comparison Layer g can be
thought of as a prototype layer in which every training sample is a proto-
type. Formally, we set p; := f(xi), Do = R(Xic), p{e = Var(xi.), and
_ﬁt = FT(x;,.) for i € {1,2,..., N}, and § operates as a prototype layer with
prototypes Py = {pi}N,. ThlS makes g;(f(x;)) the similarity between the j-th
training sample and the input x;, using the weighted similarity metric defined
previously. The kNN layer h averages the nearest neighbors’ labels and is for-
malized. as h ©go f(x;) = %Zj’etopk(_tj(f(xi))) Yir, Where‘ topk returns the k
largest indices in a vector and y; denotes the label of the j-th training sample.
ProtoEEG-kNN is therefore the composition ho go f. We perform a grid search
of k set to 5, 10, 15 and 20 and find & = 10 to have the highest accuracy on
the validation set. Lastly, we note that the kNN replacement step increases the
number of prototype comparisons during inference by a factor of N/M. Although
this may seem computationally prohibitive, the single instruction, multiple data
parallelism inherent in GPUs efficiently manages this overhead: inference over
the test set only increases from ~2 to ~6 seconds. In Section 4, we demonstrate
that the expanded number of comparisons increases accuracy and substantially
improves interpretability.
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4 Results

We train and evaluate ProtoEEG-kNN using a dataset of 16,499 1-second EEG
segments labeled by 8 annotators. Participants were recruited from three set-
tings: intensive care unit (n = 446), routine / outpatient EEG (n = 1,161), and
epilepsy monitoring unit (n = 104). The data consists of 841 males (mean age =
36.56 years) and 921 females (mean age = 36.92 years). The data was split into
12,411 training, 2,151 validation, and 1,937 test samples, with no patient over-
lap between sets. This ensures that samples from the test set are compared only
with EEGs from other patients. Samples are arranged in standard, 37-channel,
“double-banana” format [9], were filtered (60-Hz notch, 0.5-Hz high-pass), and
resampled to 128 Hz. Following the annotation procedure in Jing et al. [11], for
each EEG sample, 8 subspecialist physicians independently annotated whether
they observed an IED.

ProtoEEG-kNN was trained on a Nvidia P100 GPU for ~ 5 clock hours.
Class-balanced sampling was used during training and k was set to 10 in h.
We now describe our process to evaluate ProtoEEG-kNN’s accuracy, assess its
match-quality, and ablate its novel components.

ProtoEEG-kNN is Accurate. We evaluated model performance using binary
classification accuracy, AUROC, and R2. For binary classification and AUROC,
we assigned a sample to the positive class if y; > 0.5. To calculate R?, we used
i, the vote proportion. On the held-out test set, we evaluated ProtoEEG-KNN,
SpikeNet, kNN over the FFT of the EEG samples, KNN over the ISFs of the
EEG samples, Deep kNN [25], and EEG ProtoPNet.

The optimal weighting coefficients for kNN over the ISFs were determined
on the validation set by evaluating every combination of coefficients that sum
to 1 in increments of 0.1. For Deep kINNs, we train the latent space of SpikeNet
and copy Deep kNN’s exact hyper-parameter and optimization configuration.
As shown in Table 1 (Top), ProtoEEG-KkNN substantially outperforms existing
models for this task in terms of binary classification, AUROC and RZ2.

ProtoEEG-kNN produces good matches. To demonstrate that ProtoEEG-
kNN produces quality matches that align with medical intuition, we conducted
a user study with four board-certified neurologists (with 2-16 years of clinical
experience) and a clinical neurophysiology /EEG fellow. Experts were shown 100
‘reference’ EEG samples from the test set and ranked the similarity of four ‘can-
didate’ matches. Three candidates were the top matches identified by ProtoEEG-
kNN, Deep kNN, and EEG-ProtoPNet, while the fourth was a randomly selected
sample that shared the reference’s classification label. For each ranking, the or-
der of candidates was randomized and the selection method was hidden. We
restricted reference samples to have label > 0.75 to ensure clear IED patterns
for matching.

To quantify each model’s match quality, we used best-match frequency and
Plackett-Luce model weights. Best-match frequency indicates how often each
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Method Binary Accuracy AUROC R?
SpikeNet 77.12 0.844 0.429
kNN over FFT 70.72 0.720 0.209
kNN over ISFs 74.39 0.733 0.210
Deep kNN [25] 77.16 £ 0.01  0.805 4+ 0.007 0.341 4+ 0.019
EEG-ProtoPNet 80.24 + 0.36  0.866 + 0.006 0.207 + 0.019
ProtoEEG-kNN (ours) 81.15 + 0.29 0.876 + 0.000 0.529 + 0.007
Ablations

Remove w, 80.74 + 0.08  0.878 4 0.002 0.536 + 0.003

Remove ISFs 80.91 + 0.00 0.878 £ 0.001 0.538 + 0.005

Remove w. & ISFs 81.09 £ 0.61 0.885 + 0.004 0.531 + 0.027

ProtoEEG-kNN (complete) 81.15 + 0.29 0.876 = 0.000 0.529 £ 0.007

Table 1: Performance of ProtoEEG-kNN compared to baselines (Top) and ab-
lated models (Bottom). For models that required additional training, we train
with 3 different random seeds and report mean and standard deviation. For
deterministic models and the model provided by another research group, the
results of that single model is reported.

model was ranked first, while Plackett-Luce weights consider the full ranking
distribution and represents the probability each model provides the best match
[8]. Across both metrics, ProtoEEG-kNN produces matches that align the closest
with expert opinion (Fig. 2 (Top)).

We also qualitatively evaluate the comparison space of our model by using
the dimension reduction tool PaCMAP [23] to visualize the distribution of the
test set under ProtoEEG-kNN’s similarity metric. Relative to the comparison
space based on the kNN over ISFs’ similarity metric, ProtoEEG-kNN learns
more distinct and well-separated classes (Fig. 2 (Bottom)).

Ablations. Finally, we evaluate ProtoEEG-kNN’s performance without channel-
wise weights and ISFs (Table 1 (Bottom)). The inclusion of channel-wise weights
and ISFs marginally effects binary classification (1 0.06%), AUROC ({ 0.0084),
R? (| 0.0022), while resulting in much closer matches (Fig. 1 (Top)).

5 Conclusion

We introduced ProtoEEG-kNN, an interpretable model for IED detection that
achieves state-of-the-art performance while providing interpretable reasoning for
its decisions in the form of “This EEG looks like these EEGs”. In addition to
being interpretable, our model’s kNN layer, similarity metric, and channel-wise
weights scores constrain it to reason in a way that aligns with clinical intu-
ition about spike morphology and spatial distribution, as shown through our
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Method Plackett-Luce Weight Best-Match Frequency
Random 0.128 (0.111, 0.144) 0.104
EEG-ProtoPNet 0.078 (0.065, 0.088) 0.052
Deep kNN 0.333 (0.298, 0.368) 0.370
ProtoEEG-kNN 0.462 (0.427, 0.501) 0.474
ProtoEEG-KNN KNN over ISFs
% - % Class: 0/8
e " TR P > Class: 1/8
e piarsoll - Class: 2/8
BE i e Class: 6/8
o 't:" s " Class: 7/8
X Class: 8/8

* R

Fig.2: Top: User Study Results. Bootstrapping with 1,000 iterations was used
to calculate the mean and 95% confidence interval for Plackett-Luce weights.
Bottom: PaCMAP visualization of the test set comparison spaces of ProtoPNet-
kNN (left) and kNN over ISFs (right). Neighborhoods in high-dimensional space
are preserved in two-dimensional PaCMAPs.

user study. While ProtoEEG-kNN demonstrated promising results, future work
should externally validate ProtoEEG-KNN using different patient populations
to confirm its generalizability. Nonetheless, ProtoEEG-kNN offers a promising
path forward for the integration of machine learning into clinical practice.
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