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Abstract. Effective therapy decisions require models that predict the
individual response to treatment. This is challenging since the progres-
sion of disease and response to treatment vary substantially across pa-
tients. Here, we propose to learn a representation of the early dynamics
of treatment response from imaging data to predict pathological com-
plete response (pCR) in breast cancer patients undergoing neoadjuvant
chemotherapy (NACT). The longitudinal change in magnetic resonance
imaging (MRI) data of the breast forms trajectories in the latent space,
serving as basis for prediction of successful response. The multi-task
model represents appearance, fosters temporal continuity and accounts
for the comparably high heterogeneity in the non-responder cohort.In
experiments on the publicly available ISPY-2 dataset, a linear classifier
in the latent trajectory space achieves a balanced accuracy of 0.761 us-
ing only pre-treatment data (T0), 0.811 using early response (T0 + T1),
and 0.861 using four imaging time points (T0 → T3). The full code
can be found here: https://github.com/cirmuw/temporal-representation-
learning

Keywords: Temporal representation learning, Self-supervised learning,
Breast Cancer

1 Introduction

Pathological complete response (pCR) to neoadjuvant chemotherapy (NACT) of
breast cancer is a key marker of success determined on the basis of tissue resected
during surgery [16]. Predicting pCR by assessing early response dynamics can
steer treatment decisions. Even after concluded NACT, it may inform impor-
tant choices such as forgoing surgery in case of expected pCR, given sufficient
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prediction reliability. While single time point observations lack information on
subtle, dynamic changes to treatment [10,19], longitudinal imaging may capture
changes associated with individual treatment efficacy or disease progression.

Here, we propose a multi-task model to learn trajectory representations of
imaging features observed during treatment. We show how a simple classifier
can use this representation to predict future pCR with high accuracy. Our ap-
proach addresses the challenge of high inter-label similarity [13] and relatively
substantial inter-individual variability not associated with treatment response.
The dynamics of early response enables better prediction, while multi-task rep-
resentation learning accounts for the response heterogeneity.

Related work Prior efforts to predict pCR in breast cancer imaging have used
radiomics-based [9, 14, 16] and deep learning-based approaches [1, 3, 4, 10, 11, 19,
23]. These methods largely focus on single [1, 4, 11, 14] or two time point pre-
dictions [9, 19, 23], limiting their ability to capture the full temporal dynamics
of tumor progression. Although some studies incorporate multiple time points
for pCR prediction [3,10], only [10] explicitly models temporal relationships us-
ing an LSTM layer [8]. Using three imaging time points, the model achieved
AUC = 0.706, Sensitivity = 0.483 and Specificity = 0.773 [10]. Learning tem-
poral relationships by creating individualized treatment progression trajectories
or leveraging the learned temporal relationships to improve single time point
predictions remains unexplored. The publicly available ISPY-2 dataset consists
of series of MRIs taken before and during NACT [15, 18]. It provides an op-
portunity to address these limitations by modelling temporal dynamics more
effectively. Existing methods typically classify patients as responders (positive)
or non-responders (negative) [21–23]. For instance, [23] pre-trains a pCR pre-
diction model by clustering pre- and post-NACT non-pCR images (assuming
minimal change during NACT) while separating pre- and post-NACT pCR im-
ages (assuming greater change). However, this binary framework overlooks the
heterogeneity among non-responders, including partial responders. The classifi-
cation performance of this approach resulted in a test set AUC of 0.695 for the
binary pCR label [23].

Contribution We propose a representation learning approach for image trajecto-
ries observed during treatment. We assume that, over time, responders change
similarly, while non-responders are more heterogeneous since they include both
partial responders and non-responders. The multi-task model learns to embed
appearance change, while fostering temporal continuity by a dynamic-margin
triplet loss adapted to nuanced temporal relationships. It aligns trajectories
of responders to identify common temporal dynamics associated with success-
ful treatment response, while accounting for the heterogeneity within the non-
responder group. It avoids label-driven loss functions for non-responders and
instead identifies response-specific patterns by aligning positive-outcome tra-
jectories. A multi-task attention mechanism (MTAN) [17] enables the focus on
feature changes associated with disease and treatment as opposed to comparably
static inter individual variability of anatomy.
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Fig. 1. Method Overview Multi-task representation learning balances reconstruc-
tion performance LRec with temporal continuity of trajectories LTemp, and alignment
of changes in responders LAlign. A U-shaped denoising network extracts multi-scale
features via its encoder. An MTAN module [17] steers attention across these tasks.
The resulting trajectory representations are used for pCR prediction with a linear clas-
sifier.

Experiments on the multi-center ISPY-2 dataset [15, 18] demonstrate that
the learned representation enables high prediction accuracy with a linear clas-
sifier, even with a single or only few time points. The MRI-based classification
performance surpasses the state of the art as reported in [10,23].

To our knowledge, this is the first pre-training method designed to (1) explic-
itly distinguish responder vs. non-responder progression patterns and (2) encode
temporal relationships within ISPY-2. Unlike [10] our approach directly learns
temporal dynamics for improved treatment progression modeling. Additionally,
it leverages learned trajectories to refine single time point predictions, such as
early pCR prediction at T0, enhancing its ability to capture treatment response
patterns.

2 Method

For each patient i, we observe a time-series of images xi
t for t = 0, . . . , T acquired

before (t = 0), during, and after treatment (t = T ), and a label yi ∈ {0, 1}, where
1 denotes a positive outcome (achieving pCR) and 0 a negative outcome (not
achieving pCR). The multi-task training model for representing images inte-
grates three loss functions: a triplet loss [20] with dynamic margin for temporal
modeling LTemp, a cosine similarity loss for responder alignment LAlign, and a
reconstruction loss for robust image feature learning LRec.

A set of two distinct augmented examples is generated for each training ex-
ample: A1(x

i
t) and A2(x

i
t). The final multiscale representations, derived from the

encoder f , are then given by: zit = f(A1(x
i
t)), z̄it = f(A2(x

i
t)) as shown in Fig.

1.
Our model is a U-shaped encoder-decoder network, where the multi-scale repre-



4 I. Janíčková et al.

sentations are generated from the encoder. The representation tensors are nor-
malized to a unit hypersphere and were used to predict the pCR in patients.

2.1 Constructing Multi-scale Visual Representations

We train a U-shaped encoder-decoder network to obtain a multi-scale repre-
sentation of images, while at the same time fostering temporal continuity and
alignment of trajectories observed in responders (Fig. 1). Fine-grained features
are extracted from the encoder’s multi-scale feature maps. These are then pooled,
projected and concatenated into a multi-scale representation tensor z. To ensure
that the extracted features are anatomically relevant, we incorporate a recon-
struction task:

LRec =
∑
i∈N

∑
t∈T

E(xi
t, x̂

i
t) (1)

Here, xi
t is the target input example and x̂i

t is the denoised reconstruction gen-
erated from the noise-augmented input A1(x

i
t). The loss function E quantifies

the reconstruction error using the mean squared error.

2.2 Learning Temporal Relationships

To adapt the triplet loss [20] for learning patient-level temporal relationships,
we define an anchor-positive pair as representations of two different views at the
same time point t: a = zit, p = z̄it. The negative point is the image representation
from the same patient at a different time point n = zit′ where t′ ̸= t. Instead of
a fixed margin, we use a dynamically changing margin m, based on the relative
difference between t and t′. Additionally, we replace the standard distance metric
with negative cosine similarity d. The final triplet loss is defined as follows, with
N denoting the total number of instances in a batch:

LTemp =
∑
i∈N

∑
t∈T

∑
t′∈T

max(d(zit, z̄
i
t)− d(zit, z

i
t′) +m, 0) (2)

2.3 Learning Shared Patterns of Change in Responders

In order to learn the shared patterns in responders’ temporal trajectories, their
representations are aligned by establishing correspondences in the latent space.
The alignment is defined for two patients (i, j) with yi = 1 and yj = 1 and
their corresponding representation tensors (zit, z

j
t ). The objective is to learn

population-level response patterns by minimizing the distance between zit and
zjt . The alignment loss is then defined for pairs representation as:

LAlign =
∑
i∈N

∑
j∈N

∑
t∈T

I(yi = 1 ∧ yj = 1)d(zit, z
j
t )) (3)

Here, I is an indicator function that ensures that the loss is only computed
for pairs of positive examples. The expression d(zit, z

j
t ) represents the negative

cosine similarity between the two representations.
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2.4 Overall Loss Function

The objective of the pre-training phase is to optimize the combined loss function:

LART =

{
LAlign + LRec + LTemp, if y = 1,

LRec + LTemp, otherwise.
(4)

The combined loss function ensures that the positioning of negative-outcome
examples (y = 0) in the latent space is influenced only by the reconstruction
and temporal components. In contrast, positive-outcome examples are further
aligned at a population level through the supervision (LAlign, Fig. 1).

2.5 Feature Masking in Multi-Task Learning

We incorporate a learnable attention mask inspired by the MTAN module [17]
to emphasize temporal changes and response-specific patterns in feature maps.
It balances shared feature learning (LRec) with task-specific details (LAlign +
LTemp), refining representations to capture spatio-temporal changes during treat-
ment.

3 Experiments and Results

ISPY-2 Dataset We used 585 patients from the public ISPY-2 dataset [15,18]
with complete MRI scans at four NACT time points and all three DCE-derived
maps: early enhancement (PEearly, 120–150 sec post-contrast), late enhancement
(PElate, ∼450 sec), and signal enhancement ratio (SER =

PEearly
PElate

), enabling con-
sistent longitudinal comparisons. These features capture contrast washout dy-
namics, offering insights into tumor biology and vascular properties [6]. Within
this cohort, the proportion of patients achieving pCR is 33 %. To reduce mem-
ory usage, we generated axial-plane maximum intensity projections (MIPs) of
the three DCE-derived volumes. The dataset was split into 70% training-, 10%
validation-, and 20% test sets, stratified by pCR label. All volumes were resized
to 256×256×256 and intensity-normalized to [0,1] before MIP generation.

Implementation Details The model is built on a UNet backbone [7] using
MONAI’s BasicUNet [2], initialized with features argument set to [16, 32, 64,
128, 256, 32]. The encoder-decoder structure was used for reconstruction (Fig. 1),
while multi-scale encoder features were concatenated for temporal and response
learning. We incorporated MTAN’s masking strategy [17] to selectively refine
relevant feature maps, ensuring better alignment with temporal and response
dynamics. A two-layer MLP projector was then applied, resulting in a final
feature size of 480. Pre-training was conducted using Adam optimizer [12] with
a learning rate of 0.0001 and a batch size of 32 for 100 epochs. The triplet
loss margin was dynamically set by encoding MRI time points in range of [0, 1]
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Fig. 2. (A) ROC for pCR predictions of different models. (B) UMAP projection of the
test set data, colored by time point label, with plotted trajectories for two non-pCR
patients and two pCR patients. (C) Same as B, colored by pCR label. (D) Image
time-series for four patients, with visualized trajectories across all time points. Frame
colors correspond to the trajectory colors.

with a step size of 0.25. For comparison, we used LTESSL, a time- and event-
aware SSL strategy [21] introduced at MICCAI 2024, which, like our approach,
incorporates both temporal and supervised signals during pre-training. Gradient
accumulation was applied over 8 iterations with a batch size of 16 to simulate an
effective batch size of 128, with Adam (learning rate = 0.15) as the optimizer.
All models were pre-trained on full time-series data (T0 → T3).

Evaluation measures For evaluation, we applied linear classifier to the frozen
pre-trained features using sklearn’s LogisticRegression. Performance was as-
sessed on the baseline time point (T0) and the full time-series (T0 → T3) over
10 runs, reporting the mean and standard deviation for the area under the
receiver operating characteristic curve (AUROC), the area under the precision-
recall curve (PRAUC) [5], and balanced accuracy. We further analyzed early
response (T0 + T1) using sensitivity, specificity, positive predictive value (PPV),
and negative predictive value (NPV). Model and parameter selection were per-
formed on the validation set, results are reported for the test set.

3.1 Results

Comparison with baseline method We compared our approach with the
state-of-the-art model [21] and two pre-training strategies: baseline LTESSL,
LTESSL +LRec, and our proposed LART (Eq. 4). Our method consistently out-
performed the baseline across all metrics (Table 1, Fig. 2.A), achieving AUCROC
of 0.892, PRAUC of 0.746, and Balanced Accuracy of 0.861 with the full time-
series, and AUCROC of 0.764, PRAUC of 0.565, and Balanced Accuracy of
0.761 using only T0 images. Bonferroni-corrected paired t-tests showed statisti-
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Fig. 3. Comparison of feature maps (FM) extracted from encoder trained with and
without the MTAN module. Four feature maps visualize different levels of the encoder.

cally significant differences (p<0.001) for all metrics and evaluation time points
(T0, T0 → T3).

Ablation Study We conducted an ablation study to assess the contributions
of individual loss terms in our combined loss function LART (Table 1, Fig.
2.A). Three key variations were examined: (1) removing the temporal loss (w/o
LTemp), (2) removing the alignment loss (w/o LAlign), and (3) applying the align-
ment loss across both pCR and non-pCR patients instead of exclusively to pCR
cases (L∗

Align). Across all measures, all ablations resulted in a performance de-
crease. In addition, we evaluated the impact of the MTAN module [17]. As shown
in Table 1, removing MTAN significantly reduced performance, confirming its
role in enhancing feature informativeness for pCR classification. Fig. 3 illustrates
how MTAN masking improves the attention focus on tumor regions. Lastly, we
visualised the latent space of our model, highlighting temporal (Fig. 1.B) and
outcome labels (Fig. 1.C).

Early Response Prediction Further analysis was performed to evaluate the
prediction task for early response when only part of the time-series is available

Table 1. Linear evaluation results for the pCR prediction for early time point (T0) and
entire time-series (T0 → T3) comparing a baseline approach LTESSL and LTESSL and
LRec, ablated versions of the proposed approach (exluded components marked with
w/o), and the proposed approach LART .

Method AUROC PRAUC Balanced Acc
T0 T0 → T3 T0 T0 → T3 T0 T0 → T3

LTESSL 0.625±.01 0.556±.01 0.367±.01 0.449±.01 0.526±.01 0.565±.01
LTESSL + LRec 0.507±.02 0.556±.01 0.321±.01 0.413±.03 0.472±.02 0.556±.03

w/o MTAN 0.558±.02 0.783±.01 0.359±.01 0.613±.01 0.528±.03 0.697±.02
w/o LTemp 0.495±.02 0.562±.03 0.322±.02 0.346±.02 0.492±.03 0.518±.04

w/o LAlign 0.575±.02 0.603±.01 0.388±.02 0.442±.02 0.593±.02 0.567±.02
+ L∗

Align 0.475±.02 0.554±.03 0.312±.01 0.356±.02 0.514±.02 0.528±.03

LART 0.764±.01 0.892±.01 0.565±.02 0.746±.03 0.761±.01 0.861±.01
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Table 2. Comparison of prediction accuracy for data at pre-treatment (T0), early
response T0 + T1, and full treatment timeline before surgery T0 → T3.

T AUROC PRAUC Bal. Acc Sensitivity Specificity PPV NPV
T0 0.764±.01 0.565±.02 0.761±.01 0.731±.02 0.762±.02 0.603±.02 0.852±.01

T0 + T1 0.802±.01 0.649±.02 0.811±.02 0.769±.04 0.853±.01 0.721±.02 0.883±.02
T0 → T3 0.892±.01 0.746±.03 0.861±.01 0.846±.00 0.876±.02 0.772±.02 0.920±.01

(T0+T1) as shown in Table 2. Adding T1 improved performance across all metrics
compared to pre-NACT prediction. Specificity and PPV reached values of 0.853
and 0.721, respectively, nearly matching those of the full time-series (T0 → T3).
This demonstrates the feasibility of predicting treatment outcomes from early
response dynamics and the benefit of limited temporal information compared to
static pre-treatment data (T0).

4 Discussion

We propose a novel method that captures the temporal phenotypic dynamics of
treatment response. It learns to represent response-specific patterns in serial MRI
of BC patients undergoing NACT. The multi-task model generates individual
temporal trajectories, aligning behavior in responders and representing image
appearance using a joint loss function LART balanced with an MTAN attention
masking mechanism.

Comparative results underscore the contribution of the individual compo-
nents of LART . Removing the temporal term LTemp leads to performance degra-
dation, likely due to representational collapse. Omitting the responder alignment
term LAlign results in poor linear probing performance due to a lack of supervi-
sion during pre-training. At the same time, accounting for the heterogeneity of
the non-responder group is crucial, as demonstrated by the drop in performance
when aligning trajectories within both the responder- and non-responder groups
using L∗

Align as well as in the baseline LTESSL. The role of temporal signal
in pre-training is suggested by the decline in T0 performance when excluding
MTAN, in contrast to the full time-series performance (Fig. 2.A).

Linear classification results demonstrate that the learned representation carry
relevant information for pCR prediction, outperforming previous methods [10,23]
(see Sec. 1). Pre-training of representations using longitudinal data, also improves
prediction using only single time point (T0) and early response (T0+T1) predic-
tions, surpassing reported results.

Although ISPY-2 is a multi-center dataset, further validation on independent
datasets would enhance the generalizability of our findings. Additionally, 3D
CNNs would be ideal for volumetric information, but memory constraints and
the size of the dataset limited us to 2D MIPs.
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5 Conclusion

Predicting pCR in breast cancer patients is challenging due to the heterogeneity
of individual response behavior. This study demonstrates that representing tem-
poral dynamics can improve prediction accuracy. It identifies response-specific
patterns in imaging data by balancing reconstruction, temporal continuity, and
alignment of responder time-series. Evaluated with a frozen encoder and linear
classifier, our method outperformed both the LTESSL loss for time-series [21]
and prior results reported on the ISPY-2 dataset [10], highlighting the effective-
ness of the pre-training approach. Predicting pCR using the full time-series has
the potential to inform forgoing surgery. Results show that prediction based on
early response is feasible, offering a perspective for early therapeutic adjustment.
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