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Abstract. Current prognostic and diagnostic AT models for healthcare
often limit informational input capacity by being time-agnostic and fo-
cusing on single modalities, therefore lacking the holistic perspective cli-
nicians rely on. To address this, we introduce a Time-Aware MultiModal
Transformer Encoder (TAMME) for longitudinal medical data. Unlike
most state-of-the-art models, TAMME integrates longitudinal imaging,
textual, numerical, and categorical data together with temporal informa-
tion. Each element is represented as the sum of embeddings for high-level
categorical type, further specification of this type, time-related data, and
value. This composition overcomes limitations of a closed input vocabu-
lary, enabling generalization to novel data. Additionally, with temporal
context including the delta to the preceding element, we eliminate the
requirement for evenly sampled input sequences. For long-term EHRs,
the model employs a novel summarization mechanism that processes se-
quences piecewise and prepends recent data with history representations
in end-to-end training. This enables balancing recent information with
historical signals via self-attention. We demonstrate TAMME’s capabil-
ities using data from 431k+ hospital stays, 73k ICU stays, and 425k
Emergency Department (ED) visits from the MIMIC dataset for clin-
ical classification tasks: prediction of triage acuity, length of stay, and
readmission. We show superior performance over state-of-the-art ap-
proaches especially gained from long-term data. Overall, our approach
provides versatile processing of entire patient trajectories as a whole to
enhance predictive performance on clinical tasks. Code is available at
github.com/go31glX57 /tamme.

Keywords: Multimodal Learning - Temporal Modeling - Longitudinal
Health Records - Clinical AI .

1 Introduction

In clinical decision-making, practitioners exploit the full range of information
available for an individual patient, comprising medical imaging, textual reports,
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Fig. 1. TAMME is a transformer encoder that takes in a sequence of EHR elements of
different modalities comprising numerics, categoricals, imaging, and text. Each element
is represented as a token resulting from the sum of embeddings for value, position/time,
type specifics, and type category. The latter are learned during training; numerical
values are represented by Fourier Features; for other values, external pre-trained models
are used as encoders. All embeddings are projected into a shared space by trainable
projection modules. By this, a uniform sequence of tokens is obtained that can be
processed by a regular transformer with a task-specific head. In order to cope with long
sequences beyond regular capacity in an end-to-end fashion, we add a summarization
mechanism. By this, features for overflowing subsequences are extracted piece-wise.
Subsequently, a dedicated trainable type token is added to those summaries before
pre-pendeding them to the most recent items. The transformer encoder then extracts
the final features from this resulting sequence. Throughout the whole diagram, the
flame icon indicates trainable components while a snowflake symbol is attached to
modules that are frozen during the whole training process.
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prescriptions, vitals, previously applied procedures, and more. This multimodal
data is typically used to put the current health status of a patient into the context
of their individual records and disease progression. In particular, incorporated
temporal information for each entry allows doctors to compare items longitudi-
nally when assessing individual relevancy. Recent Al models in healthcare also
incorporate multiple modalities but are mostly limited to a few modalities [205]
or focus on vision-language tasks [I]. Moreover, they often omit longitudinal dy-
namics or temporal information and isolate recent single-time events. However,
in extensive real-world datasets such as MIMIC [S[9U7ITT], the patient’s history
contains the vast majority of information (cf. Figure . We propose a versatile
transformer-based classification model capable of processing both recent and his-
torical data of a patient as one holistic sequence along with temporal information
while weighting its elements individually. We show that this time-aware multi-
modal transformer encoder can facilitate multiple clinically relevant downstream
tasks. Our key contributions can be summarized as follows:

1. We develop a highly-generalizable approach of representing rich EHRs in-
cluding a wide variety of modalities as a sequence of uniform tokens within
a joint embedding space. In particular, it allows a model to extend to novel
data types such as pharmaceuticals without re-training.

2. We propose the integration of temporal information, eliminating the need
for equally sampled input sequences and consequently removing the need for
explicit handling of missing data.

3. We introduce a summarization mechanism to learn from arbitrary long EHRs
in an end-to-end manner.

4. We demonstrate our approach on the MIMIC dataset, where the resulting
model outperforms baseline approaches in five of six tasks.

2 Related Works

The clinical classification tasks our model is trained for have been widely covered
in literature, in particular for the MIMIC-IV dataset. For predicting triage acu-
ity in ED, a decision tree trained on polynomial features from vitals, medication,
complaints, and metadata achieves SOTA results [23]. MeTra [12], a modified
vision transformer, is the first use of a transformer for ICU survival prediction.
It prepends patch projections of one image per patient with tokens for selected
numerical data from a limited timespan. On MIMIC-IV, XGBoost succeeded in
ICU survival prediction [I6] from crafted numerical features, while MedFuse [5]
combines numerical EHR elements with images to predict in-hospital mortality.
ICU length of stay classification has been done using BERT-based models [19],
Random Forest Classifier [6], or an LSTM model [3].The duration of hospital
stay and readmission have been successfully predicted, for example, by LSTM
models [3] or a so-called Hierarchical Attention Network [4], again using nu-
merical clinical data. There is also a considerable amount of work leveraging
the longitudinal data structure of EHRs, some also incorporating temporal in-
formation. MOTOR [2I] and BEHRT [I5] both use a sequence of categorical
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EHR events timestamped with the current patient age to train a transformer for
prognosis, albeit with highly different architecture and training strategies. An-
other proposed option for time integration is explicitly scaling the transformer’s
self-attention to prioritize recent over historic data [I3]. There have also been
experiments with both, time-aware attention scaling and time embeddings that
are added to the input tokens for longitudinal imaging data [I4]. Early work on
multimodal sequence modeling including temporal aspects uses a transformer
to process numeric and categorical ICU data together with patient metadata
and history statistics [20]. We significantly go beyond this with a highly versa-
tile input representation that can include all kinds of numeric, categorical, and
meta data as well as texts and images, while still being extendable to novel data
types. Further, our model incorporates all relevant relative temporal information
and is capable of processing long-term history restricted in length only by the
availability of computational power.

3 Methods

Modular Token Representation

We propose a novel approach for holistic token representations of multi-modal
EHRs. In our setting, a temporally ordered sequence of numerical, categorical,
textual, and imaging EHR elements from a single patient constitutes a sample.
Each element consists of a high-level type category (e.g., drug, procedure), free
text type specifics (e.g., drug name, description), temporal information, and a
value (image, text, number, or none for categoricals). TAMME obtains a uni-
form sequence where each token representation is the sum of embeddings for
type category, type specifics, time, and value (cf. Figure|l]). To obtain the value
embeddings, numerics are encoded as Fourier Features [22] while for images and
texts, external domain-specific pre-trained models are used, namely RAD-DINO
[I7] and BioLORD 2023 [I8]. All value embeddings remain frozen throughout
the whole training process. For temporal information, we use a sinusoidal rep-
resentation of patient age, time delta to the preceding EHR element, element
position within the sequence, and an optional time delta to an anchor event such
as the latest hospital admission. For type information, a large-scale closed vo-
cabulary would limit extendability of a trained model to novel datasets and EHR
elements such as unseen drugs. We overcome this by splitting type information
into a high-level category and specifics. In close consultation with experienced
clinicians, we define a minimal yet comprehensive set of 32 categories which
are represented by randomly initialized and fully trainable embeddings. These
categories are further specified by free-text details which are statically encoded
by the same domain-specific pre-trained model as used for text values. Figure
includes an illustration. By this, we obtain semantically valid embeddings which
are robust to most data inconsistencies in spelling, terminology, etc. and techni-
cally enable the zero-shot application of a trained model to novel data. Overall,
we propose a versatile approach for joint learning from most kinds of patient
data with longitudinal structure and temporal information.
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Model Architecture

TAMME employs a well-known transformer architecture with minor modifica-
tions: input sequences are being encoded as described above; static embeddings
for type specifics as well as for numeric, textual, and image values are projected
to a shared space by linear layers that are trained end-to-end along with the other
building blocks of the model. The projections are combined with the trainable
type category embedding via addition, resulting in a sequence of uniform tokens.
Instead of using standard positional embeddings, we leverage the temporal in-
formation of each token represented as sinusoidal frequencies and add them to
the corresponding tokens. A transformer encoder is used as a feature extractor
on these token sequences together with a CLS token. We attach a specific head
and train the whole model separately for each one of a selection of classifica-
tion tasks relevant to clinical decision making. To enable the full processing of
individual EHRs far beyond the regular input length n of the model, TAMME
features piecewise summarization: the remainder of an input sequence exceeding
specified capacity by m tokens is processed piecewise. Each of the s := [7]
overflowing subsequences of maximal length n is being replaced by the feature
vector produced by the model for this isolate subsequence. The most recent n—s
tokens of the input sequence are kept unchanged and prepended with the s sum-
mary tokens. An illustration is included in Figure [I] To mark a summary token
as such, a learnable type embedding is applied via addition. The entire setup
remains trainable in an end-to-end manner and enables the complete processing
of individual patient journeys in the form of long-term EHRs.

Self-Supervised Pre-training

We also explore a variant where we first pre-train TAMME using Masked Se-
quence Modelling in a self-supervised fashion. Respecting imbalance among high-
level type categories, we apply biased-random sampling when selecting the tokens
to mask. Only the unmasked tokens are processed by the transformer encoder
and a transformer decoder model is added to reconstruct the masked tokens from
context. We task the model to recover the type category as well the embeddings
for type specifics and value for each of the masked tokens. In a second stage, we
omit the decoder and fine-tune the transformer encoder module for each of our
tasks individually.

4 Experiments & Results

To investigate our approach we merge MIMIC-IV [§], MIMIC-ED [7], MIMIC-
Note [9], as well as MIMIC-CXR [I1/10], all at version 2.2 from PhysioNet [2].
From MIMIC-Note, we use the findings section of radiology reports and all con-
tents of discharge summaries. We add information such as patient age, pre-
compute static embeddings, and create subsets centered around hospital, ED,
and ICU stays. All data is split randomly into training, validation, and test set
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using a 70-15-15 split. We ensure all data from one patient is only included in
one split. The dataset contains 425M+ single events from 303k+ patients, 431k+
hospital stays, 73k+ ICU stays, and 425k+ ED visits. We train and evaluate our
model on ED visits, stationary hospital stays, and ICU stays for the following
classification tasks, where applicable: length of stay, survival, readmission, and
triage acuity (i.e. assigning a criticality level to patients at ED, see [7]). Table
provides an overview. For each stay, we label a patient as survived, if there is
no death charted within the respective stay nor within 24h after discharge, i.e.
the end of the stay. This temporal tolerance accounts for precision shortcomings
in the original charting and data collection process of MIMIC. To prevent in-
formation leakage, we exclude events from the model’s input that might reveal
the prediction target, such as the current discharge summary. We constrain the
model’s input data based on the covered time span. By default, it ranges from the
onset of the current stay to the earliest of the following: prediction target event,
end of stay, or a fixed maximum of 12 hours from the beginning of the stay. For
readmission prediction, the 12-hour cap is omitted, allowing the model to lever-
age all data of the most recent stay. For all tasks, we experiment with extending
this time window to historic records dating back up to one week, six months, or
one year prior to the beginning of the current stay. The results detailed in Table
generally indicate performance improvements by historic data, albeit subject
to the specific task. In comparison to training task-specific models from scratch,
we also evaluate fine-tuning a task-agnostic model that has been pre-trained in
a self-supervised manner (see Section . We assume that uniform pre-training
affects performance equally for all context windows used in fine-tuning. Thus, we
only use to best configuration from Table [2] to reduce computational cost. Pre-
training is done on 400k-+ multimodal EHR subsequences obtained by a sliding
window of size 3000. At a second stage, we then fine-tune the resulting model
on the exact same data and parameter set as we did when training from scratch.
Further, we benchmark against the state of the art baseline. Overall, our train-
ings are done on 2-8 Nvidia A100 GPUs for up to 103 hours, highly depending
on the length of input sequences. As summarized in Table [3] we overall observe
slight gains from pre-training, while TAMME exceeds baseline performance in
five of six tasks. For the triage acuity task, we follow [23] using a subsampled
dataset to tackle heavy class imbalance. We still observe inferior performance of
our general approach when compared to the specialized baseline. We hypothesize
that short-term signals relevant for triage might be easily cluttered by long-term
data. We suspect a similar signal-vs-noise tradeoff explains the minor perfor-
mance drops when using an extended EHR window in some tasks. However, this
negative impact from long-term information is marginal, whereas its positive
impact is significant (Tasks 2, 3, 5). Overall, we discover that the ideal EHR
input window varies among tasks.
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Table 1. Task targets and classes.

Task ID Target Classes
1 Hospital Length of Stay short (<3d), long (>3d)
2 In-Hospital Survival True, False
3 Hospital Readmission  within 30 days, after 30 days / never
4 ICU Length of Stay short (<3d), long (>3d)
5 In-ICU Survival True, False
6 ED Triage Acuity 1,2,3,4,5

Table 2. Classification performance for different extents of included historic EHRs.

Task ID Target No History| 7 Days |6 Months| 1 Year

ACC AUC|ACC AUC|ACC AUC|ACC AUC

Hospital Length of Stay| 0.79 0.83 | 0.80 0.85 |0.82 0.88 | 0.80 0.87
In-Hospital Survival | 0.85 0.87 | 0.86 0.86 | 0.89 0.89 [0.90 0.91
Hospital Readmission | 0.65 0.73 | 0.68 0.77 | 0.81 0.83 |0.82 0.81
ICU Length of Stay | 0.81 0.83 |0.82 0.84| 0.80 0.79 | 0.81 0.80
In-ICU Survival 0.88 0.87 | 0.88 0.91 {0.94 0.92 | 0.93 0.95
ED Triage Acuity 0.79 0.78 | 0.76 0.78 | 0.75 0.77 | 0.76 0.78

DO W N -

5 Discussion & Conclusion

We introduced TAMME, a time-aware transformer encoder for multimodal lon-
gitudinal EHRs. Unlike existing models, TAMME is extendable, versatile, and
integrates most clinically relevant data types while preserving longitudinal struc-
ture and temporal information. Using piecewise summarization, it can process
long patient histories effectively. While still being limited by the availability of
computational power, this enhances control on resource usage and contributes to
the model’s ability to distinguish between recent and historical signals. Our ex-
periments demonstrate that leveraging extended patient histories can indeed im-
prove predictive performance on clinical tasks, surpassing state-of-the-art base-
lines in five of six tasks. This highlights the importance of capturing temporal
dependencies and multimodal information for targeted decision-making. Further
evaluation on other datasets and additional clinical tasks, such as personalized
treatment recommendations, might help to assess the model’s broader applica-
bility as well as a clinical trial, exploring the model’s reasoning, and an extensive
ablation study beyond the length of historic context. In conclusion, TAMME of-
fers a scalable approach for processing multimodal longitudinal EHRs, advancing
clinical predictive modeling and decision support.
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Table 3. Classification performance of our model trained from scratch vs. a fine-tuned
variant based on self-supervised pre-training, all compared against the baseline. For
each task, the best configuration according to Table 2] has been used.

Task ID Target Ours Baseline
pre-trained|from scratch| result ref
ACC AUC|ACC AUC |ACC AUC

Hospital Length of Stay| 0.83 0.89| 0.82  0.88 - 085 [3]
In-Hospital Survival | 0.96 0.95 | 0.90 0.91 - 087 [A]
Hospital Readmission | 0.81 0.84 | 0.81 0.83 - 079 3

ICU Length of Stay | 0.82 0.83 | 082 0.84 | - 076 [3]
In-ICU Survival [ 0.94 0.95 | 0.93 0.95 | 0.83 0.91 [I6]
ED Triage Acuity | 0.83 0.81 [0.79 0.78 |0.99 - [23]

S O W N
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