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Abstract. Accurate staging of Diabetic Retinopathy (DR) is essential
for guiding timely interventions and preventing vision loss. However, cur-
rent staging models are hardly interpretable, and most public datasets
contain no clinical reasoning or interpretation beyond image-level la-
bels. In this paper, we present a novel method that integrates graph
representation learning with vision-language models (VLMs) to deliver
explainable DR diagnosis. Our approach leverages optical coherence to-
mography angiography (OCTA) images by constructing biologically in-
formed graphs that encode key retinal vascular features such as vessel
morphology and spatial connectivity. A graph neural network (GNN)
then performs DR staging while integrated gradients highlight critical
nodes and edges and their individual features that drive the classifica-
tion decisions. We collect this graph-based knowledge which attributes
the model’s prediction to physiological structures and their character-
istics. We then transform this reasoning into textual descriptions for
VLMs. We perform instruction-tuning with these textual descriptions
and the corresponding image to train a student VLM. This final agent
can classify the disease and explain its decision in a human interpretable
way solely based on a single image input. Experimental evaluations on
both proprietary and public datasets demonstrate that our method not
only improves classification accuracy but also offers more clinically in-
terpretable results. An expert study further demonstrates that our agent
provides more accurate diagnostic explanations and enables precise lo-
calization of pathologies in OCTA images.
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1 Introduction

Diabetic Retinopathy (DR) remains one of the primary causes of vision loss,
and its early detection and staging can significantly reduce the risk of blindness
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[10]. Early work has demonstrated the capabilities of deep learning models in
the accurate prediction of DR staging on color fundus images [2,22]. Optical
Coherence Tomography Angiography (OCTA) is a higher resolution non-invasive
imaging modality for examining retinal vasculature in fine detail. Compared to
fundus images, OCTA images capture finer microvascular changes linked to DR
progression. Biomarkers extracted from OCTA images, such as Blood Vessel
Density (BVD) and the Foveal Avascular Zone (FAZ) area, play a critical role in
evaluating the severity of DR [18,20]. Methods based on these biomarkers have
shown promising results: Sandhu et al. [18] proposed a machine learning pipeline
that integrates OCT and OCTA features with clinical and demographic data
to enhance the classification of non-proliferative diabetic retinopathy (NPDR).
Alam et al. [1] developed a support vector machine classifier leveraging structural
features, such as vessel tortuosity, vascular caliber, and vessel perimeter index to
categorize NPDR severity levels. However, the biomarkers cannot be attributed
to specific image regions, and the results are difficult to interpret or verify by
clinicians.

Fig. 1. Method Overview. Biology-informed heterogeneous graphs are first con-
structed based on OCTA images of the DVC. Integrated gradients highlight key vascu-
lar features and regions, which are then summarized in tabular form. A teacher model
uses this information to generate image-text data for fine-tuning a student model, cul-
minating in an agent that provides DR diagnosis, localization of abnormalities, and
explanations solely based on a given OCTA image.

Developments in Vision-Language Models (VLMs) open up new possibilities
for addressing the interpretability gaps in deep learning. They not only excel at
generating coherent text but can also respond to specialized prompts and inte-
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grate supplementary information, whether from a retrieval-augmented pipeline
[24] or through fine-tuning [11,13]. VLMs leverage massive paired datasets from
the natural image domain to perform various vision-language tasks. Emerging
large datasets of biomedical image-text pairs [3,7,28] further enable the train-
ing and tuning of VLMs for domain-specific tasks. In modalities such as MRI
and CT, attempts have been made to adapt VLMs for basic diagnostic report-
ing [19,26,27]. Importantly, conversation offers an intuitive and natural way of
exchanging knowledge [4,17], enabling clinicians to resolve uncertainties, seek
further details, or reconcile model outputs with their own expertise. However,
current methods tend to rely on generic image-text pairs that lack the granular-
ity needed to accurately describe pathological features. Moreover, for modalities
like OCTA, the scarcity of large-scale, high-quality image-text datasets further
constrains the direct application of VLMs.

Contribution. In this paper, we present a novel method for training a VLM
agent that enhances the interpretability of DR staging by providing a textual
interface which allows clinicians to directly interact with the DR staging model.
We achieve this by first integrating a GNN to capture complex spatial relation-
ships in OCTA images of the deep vascular complex (DVC) for DR staging, and
then transforming this graph-based knowledge into structured, table-formatted
texts for a teacher model to generate fine-tuning data. We subsequently fine-tune
VLM models with direct image inputs. The results show enhanced performance
in both classification and interpretation tasks, where only OCTA images and a
few lines of background knowledge are provided as prompts, marking a promis-
ing step toward models that can both classify and explain their predictions in a
clinically relevant manner. In that, our method is related to current advances in
reasoning language models.

2 Method

2.1 Overview

Fig. 1 outlines the major steps of the proposed method: (1) construct a hetero-
geneous graph from OCTA scans and train a GNN to predict DR stages; (2)
employ integrated gradients to identify edges and nodes critical to the GNN’s
decision; (3) consolidate these important graph elements into a structured ta-
ble; (4) generate Q&A pairs by a teacher model for vision-focused instruction
tuning; and (5) during inference, the fine-tuned model receives a raw OCTA im-
age as input and functions as an interactive diagnostic agent that combines the
classification capabilities of the GNN with the rich explanatory power of VLMs.

2.2 GNN-based Staging

Graphs are particularly well-suited for modeling the structure of the retinal
vasculature [9,15]. Following a recent work on DR staging with GNNs [14], we
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first construct a heterogeneous graph representation that encodes biologically
relevant features of the retina. This graph consists of nodes representing ves-
sel segments, intercapillary areas, and the FAZ, with edges capturing spatial
and structural relationships. Retinal vasculature is segmented using a high-
resolution method [8], ensuring continuity for accurate graph representation.
Vessel segments between bifurcation points are represented as nodes with fea-
tures such as length, curvature, and radius. Intercapillary areas are detected via
connected component labeling, with nodes enriched by geometric properties like
area, perimeter, and eccentricity.

DR staging is then treated as a graph classification task and a GNN is em-
ployed to process the constructed graph. The GNN employs multiple SAGE
layers [5] to perform message passing across both homogeneous and heteroge-
neous edges. Aggregated features are obtained via sum and max pooling, cap-
turing both dense and sparse representations of the graph. These aggregated
embeddings are then concatenated and processed through a multi-layer percep-
tron, which outputs predictions for DR stages as one of three discrete classes
(healthy, non-proliferative DR and proliferative DR (PDR)).

2.3 Feature and Location Attribution

To identify the important biological features of individual nodes and edges lead-
ing to the predictions, we apply integrated gradients (IG) [14,21], a method that
quantifies feature attributions by evaluating gradients along a path from a base-
line input to the actual input. For graph-structured data, we compute IG for
each node and edge to assess their contribution to the predicted outcome. For
each node v and its feature i, their IG is shown in equation (1).

IGi(x) = (xinput,i−xbaseline,i)×
∫ 1

0

∂f(xbaseline + α(xinput − xbaseline))

∂xi
dα, (1)

where f is the model’s prediction function and xi represents the i-th feature
of node v. The resulting IG scores are used to rank nodes and edges by their
influence on the prediction. The advantage of these graph-based explanations is
that they preserve both human interpretable features (e.g. vessel diameter) and
the features’ locations.

2.4 Data Preparation for Instruction Tuning

The information stored on the important nodes and edges identified by IG is
compiled into a structured table. Specifically, for each graph, the table includes:
(1) graph-level information: densities of nodes and edges in each of the four
quadrants. (2) Node-level information: Node ID, importance score, spatial loca-
tion, and the most important features such as vessel diameter and roundness.
(3) Edge-level information: Edge ID, importance score, connected node pairs,
spatial location, and most important features. The ground truth label of the im-
age and the classification probabilities generated by the GNN are also provided
to guide the teacher model.
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Fig. 2. Examples of Instruction Tuning Data. Key features and locations are
marked in purple and green, respectively. An overlay heatmap is provided as an example
to highlight the importance of blood vessels on the OCTA image based on the IG
method. During the actual training and inference, only raw OCTA images are used.

The structured tables and OCTA images are then used to generate question-
answer pairs for two-stage instruction tuning. OpenAI o1 [16] is used as a teacher
to create conversational datasets that simulate clinical interactions. Example
Q&A pairs generated by the teacher model are shown in Fig. 2, the questions
in stage 1 focus on overall diagnosis, while stage 2 incorporates more detailed,
location-specific questions that probe deeper into retinal morphology, including
specific quadrant abnormalities and distinctive vascular patterns.

2.5 VLM Prompting and Tuning

We adapt our method to lightweight (open source) models and state-of-the-
art (closed) commercial models. For lightweight models such as Llama-3.2-11B-
Vision [23] and Qwen 2.5-VL 7b [25], we follow similar steps as described in
[11,13] to fine-tune the VLMs. Specifically, in the first stage, we freeze the lan-
guage model and align the model based on image-classification pairs. In the
second stage, we fine-tune the model end-to-end with stage-2 Q&A pairs.

For larger commercial models, we follow the standard procedures in their
APIs to perform supervised fine-tuning. Since these models allow extended con-
text windows, we employ a retrieval process for each set of Q&A data for an
image. This process adds cases with similar graph features along with their la-
bels and images as context, helping the models to better understand the graph-
based knowledge. Specifically, we compute an eight-dimensional distribution vec-
tor that quantifies the number of nodes and edges located in each of the four
quadrants of the image. During inference, we calculate the Euclidean distance
between the distribution vector of the test sample and those of the training sam-
ples, and retrieve the top three most similar cases. These similar cases are also
incorporated into the prompt for the VLMs.
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3 Experiments

We conduct comprehensive experiments with 4 state-of-the-art VLMs to evalu-
ate our method’s quantitative and qualitative performance in DR staging and
explanation. Code is available at https://github.com/chenjun-li/GFT.
Dataset. We test the models on both a proprietary dataset and a public dataset.
The proprietary dataset consists of 1264 high-quality OCTA images of the DVC
and is used to train and validate the GNN. Each of these images has a resolution
of 304× 304 pixels and is assigned one of the three DR staging labels (Healthy,
PDR, and NPDR). We divide the proprietary dataset into six splits, separate
one as a fixed, never-seen test set, and perform five-fold cross-validation training
on the other five splits. We use the public OCTA [12] dataset as an additional
test set. We select 189 images that are either healthy or DR (160 Healthy, 29
DR) and disregard images with other diseases. During inference, we pool PDR
and NPDR to a single label.
Fine-tuning. In the first stage of fine-tuning lightweight models, we use 844
pairs of Q&As with only questions asking about the staging classification, and
answers explaining the key morphological features that lead to the prediction.
In the second stage, 844 × 30 pairs of Q&As with questions asking about DR
diagnosis and abnormalities in specific regions are used. We fine-tune both the
vision module and the language module using LoRA [6] on three NVIDIA RTX
A6000 GPUs. For larger commercial models, we perform fine-tuning using their
APIs and default settings.
Evaluation Metrics. For classification performance, we evaluate all models us-
ing balanced accuracy, precision, and recall rate. For explanation performance,
we first follow previous works [11,13] and use the ground-truth diagnosis and
graph-based knowledge to prompt the teacher model to generate a set of re-
sponses as standards, and then ask it to compare with the candidate models’
responses and give scores (0-100) based on the quality of the explanations. Fur-
thermore, we present 48 responses of each model to two ophthalmology experts.
These 48 responses are generated by randomly shuffling the outputs from 6 mod-
els across 8 samples. The experts then rank and assign scores to the responses
based on three criteria: overall accuracy, correct localizations, and helpfulness. A
quadrant-based system is used to verify localizations correspondence. A region
is marked as correct only when both experts agree. The ratings for each model
are then averaged to obtain the final scores.

4 Results and Discussion

4.1 Diabetic Retinopathy Staging Results

Table 1 presents the DR staging performance on our proprietary dataset. Our
graph-knowledge-fine-tuned (GFT) models consistently outperform the baseline
vision-language models (BS) and standard fine-tuning (FT) approaches. GFT-
Llama 3.2 11b achieves a balanced accuracy of 0.678, only slightly lower than
the specialized GNN’s performance, reported as 0.689 on the identical test set

https://github.com/chenjun-li/GFT
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Table 1. DR Staging Classification Performance. The proposed GFT models
consistently outperform FT and BS models.

Model
Bal.
Acc.

Prec.
Heal.

Rec.
Heal.

Prec.
PDR

Rec.
PDR

Prec.
NPDR

Rec.
NPDR

BS-GPT-4o 0.360 0.683 0.502 0.067 0.125 0.185 0.453
BS-Qwen-VL-max 0.303 0.792 0.381 0.071 0.188 0.191 0.341
BS-Llama 3.2 11b 0.237 0.742 0.331 0.071 0.188 0.111 0.192
BS-Qwen-2.5VL 7b 0.285 0.731 0.412 0.073 0.251 0.121 0.193

FT-GPT-4o 0.450 0.819 0.443 0.118 0.501 0.233 0.407
FT-Qwen-VL-max 0.474 0.917 0.547 0.334 0.063 0.235 0.813
FT-Llama 3.2 11b 0.652 0.930 0.919 0.702 0.388 0.517 0.650
FT-Qwen-2.5VL 7b 0.569 0.897 0.957 0.462 0.375 0.500 0.375

GFT-GPT-4o 0.569 0.927 0.858 0.254 0.438 0.294 0.594
GFT-Qwen-VL-max 0.574 0.883 0.913 0.382 0.375 0.352 0.656
GFT-Llama 3.2 11b 0.678 0.935 0.921 0.712 0.548 0.523 0.568
GFT-Qwen-2.5VL 7b 0.613 0.925 0.902 0.556 0.313 0.465 0.625

in [14]. Across architectures, GFT brings an average improvement of 14.8% in
balanced accuracy to FT, demonstrating the effectiveness of integrating graph.
The confidence intervals from the 5-fold cross-validation are: balanced accuracy
±10.13%, precision ±5.67%, and recall ±4.47%, respectively.

Table 2 demonstrates the cross-dataset generalization on OCTA-500. Here,
the GFT-Llama 3.2 11b model achieves a balanced accuracy of 0.842 for binary
DR detection, which is comparable to the performance of a specialized GNN
(0.893) and significantly better than ResNet (0.586). Compared to commercial
models, the open-source models offer superior classification performance in our
experiments, possibly because our end-to-end training allows for more flexible
and fine-grained parameter adjustments. These results show that the graph-
knowledge integration strategy not only improves performance on proprietary
data but also facilitates effective knowledge transfer to public datasets.

4.2 Quality of Explanation

Table 3 presents a quantitative evaluation of explanation quality across dif-
ferent model configurations. We assess explanation quality through both auto-
mated metrics (teacher model evaluation) and human expert review. The teacher
model scores reflect alignment with ground truth explanations generated from
the graph-based knowledge, while expert scores evaluate clinical relevance and
accuracy. The Loc. metric quantifies a model’s ability to correctly identify spe-
cific retinal regions containing pathological features across all test cases. The
inter-rater weighted agreement is κ = 0.83, indicating almost perfect agreement.

The results demonstrate improvements in explanation quality through graph-
based knowledge integration. GFT models consistently outperform BS and FT
models across all metrics. GFT is the only model that can locate pathological
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Fig. 3. Comparison of Interpretability. True, partially true and false information is
marked in green, yellow and red, respectively. An expert diagnosis is also provided. BS
model makes incorrect predictions with inaccurate explanations, FT model can make
correct predictions but their explanations are insufficient. GFT model can precisely
identify and locate specific retinal abnormalities, closely matching expert assessment.

Table 2. Classification Perfor-
mance on OCTA-500. We present
results for BS and GFT, and for tra-
ditional image, biomarker and GNN
baselines. Among VLMs, our GFTs
generalize better to the unseen dataset.

Model
Bal.
Acc.

F1
Heal.

F1
DR

BS-GPT-4o 0.681 0.435 0.874
BS-Llama 3.2 0.551 0.807 0.256
GFT-GPT-4o 0.759 0.958 0.682
GFT-Llama 3.2 0.842 0.969 0.800

ResNet 18 0.586 0.930 0.294
Biomarkers 0.821 0.963 0.760
GNN [14] 0.893 0.978 0.868

Table 3. Explanation Quality. Tch. de-
notes teacher model scores, Exp. represents
expert ratings, Loc. indicates correct region
localizations across all responses, and Avg. is
the mean of teacher and expert scores. Only
the proposed GFT models can provide expla-
nations with correct localizations.

Model Tch. Exp. Loc. Avg.

BS-GPT-4o 37.18 63.91 0 51.25
BS-Llama 3.2 20.65 46.41 0 34.08

FT-GPT-4o 48.31 76.25 0 62.60
FT-Llama 3.2 52.83 59.31 0 58.61

GFT-GPT-4o 62.40 94.69 13 78.55
GFT-Llama 3.2 68.12 81.87 7 74.99
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changes in the images, while all others fail to provide any region-specific ex-
planations. Fig. 3 provides a qualitative comparison demonstrating how graph-
based knowledge integration enables models to provide more clinically relevant
explanations that focus on specific vascular abnormalities. Two extra examples,
including exemplary interaction with the model are provided in the supplement
as a video.

5 Conclusion

In this paper, we introduce a novel method that integrates graph-based knowl-
edge with VLMs to facilitate end-to-end explainable diabetic retinopathy diag-
nosis. By constructing biologically informed heterogeneous graphs from OCTA
images and applying integrated gradients for feature attribution, our approach
translates complex vascular patterns into structured textual descriptions for ef-
fective instruction tuning. Experimental results on both proprietary and public
data demonstrate that our method not only improves DR staging accuracy, but
also generates more clinically interpretable explanations. Future work could ex-
plore the potential of the interaction in a clinical setting, and the use of synthe-
sized images to augment the training data to further enhance model robustness.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.
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