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Abstract. Pulmonary Embolism (PE) is a life-threatening condition.
Computed tomography pulmonary angiography (CTPA) is the gold stan-
dard for PE diagnosis, offering high-resolution soft tissue visualization
and three-dimensional imaging. However, its high cost, increased radi-
ation exposure, and limited accessibility restrict its widespread use. In
this work, we aim to introduce faster diagnosis opportunities by using
2D chest X-ray (CXR) data. CXR provides only limited two-dimensional
visualization and is not typically used for PE diagnosis due to its inabil-
ity to capture soft tissue contrast effectively. Here, we develop a novel
methodology that distills knowledge from a trained CTPA-based teacher
classifier model embedding to a CXR-based student embedding, by fea-
ture alignment - leveraging paired CTPA and CXR features as super-
vision, which can be readily acquired. This enables us to train without
requiring annotated data. Our approach utilizes a latent diffusion model
to generate CTPA-based PE classifier embeddings from CXR embed-
dings. In addition, we show that incorporating cross-entropy loss to-
gether with the corresponding loss of the teacher-student embeddings
increases performance, bringing it close to clinical-level performance. We
show state-of-the-art AUC in a PE categorization task using only the
initial CXR input. This approach broadens the diagnostic capabilities
of CXRs by enabling their use in PE classification, thereby extend-
ing their applicability beyond traditional imaging roles. The code for
this project is available: https://github.com/meshims/Cross-Modal_
CXR-CTPA_Knowledge_Distillation
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1 Introduction

Accurate and timely diagnosis of pulmonary embolism (PE) is critical to reducing
mortality and morbidity [1]. While computed tomography pulmonary angiog-
raphy (CTPA) offers detailed three-dimensional visualization and remains the
golden standard for PE diagnosis, its widespread adoption is often limited by
high costs, increased radiation exposure, and logistical constraints [8,17]. On
the other hand, chest X-rays (CXR) are ubiquitously available and low-cost but
traditionally fall short in detecting subtle features indicative of PE [22].

Cross Modality Knowledge Distillation (CMKD) techniques have been suc-
cessful in various medical imaging tasks [23,33,25,28] and generative cross-modal
translation has also effectively been applied in the field [27,7,10,32]. However,
as of now, there are very few works specifically combining diffusion models with
CMKD in medical imaging. Most diffusion models are primarily focused on gen-
erative image tasks, such as image synthesis or denoising, and knowledge dis-
tillation is typically applied using standard machine learning models (such as
teacher-student networks). A closely related application is X-ray to CT genera-
tion [16,2,21,6,30], which similarly leverages cross-modality generative capabili-
ties, though typically without incorporating explicit distillation frameworks. In
contrast, our approach employs a diffusion prior that operates on 1D embeddings
tailored for classification tasks, rather than on voxel-based image synthesis as
done in these generation methods.

Recent advancements in generative AI and cross-modal data translation have
opened new avenues for leveraging complementary information from different
imaging modalities. To this end, we assembled a unique dataset of 900 patients
suspected of having PE, each with a paired 3D CTPA and 2D CXR. We use
the cross-modality paired scans to train a novel diffusion-based framework that
capitalizes on the rich diagnostic insights captured in CTPA scans by transferring
this knowledge to enhance the analysis of CXR images. By aligning and matching
the latent representations derived from paired CTPA and CXR examinations,
our approach aims to bridge the gap between these modalities and improve the
performance of PE classification using only CXR data.

Our contributions in this work are as follows:

1. Innovative CMKD Method. We introduce a novel approach that leverages
diffusion models to translate CXR latent representations into correspond-
ing CTPA embeddings. This method preserves high fidelity and diagnostic
relevance, as evidenced by both quantitative metrics and improved PE classi-
fication performance using the generated data. To the best of our knowledge,
this is the first study to utilize real paired CXR and CTPA data for CXR-
to-CTPA CMKD.

2. State-of-the-art Classification Results of PE in CXR. By generating syn-
thetic CTPA embeddings from CXR embeddings, our approach significantly
enhances the performance of PE identification in CXRs, leading to improved
classification accuracy and increased specificity in PE diagnosis.
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3. Generalizability. The proposed method demonstrates potential for broader
applications in medical imaging, paving the way for more accessible and
advanced diagnostic tools.

2 Methods

Fig. 1 depicts the suggested pipeline. Our methodology is constructed from
three sequential phases. We begin with the development of two single-modality
encoders. One encoder processes CTPA data, and the other handles CXR data.
These encoders initially serve as baseline classification models. More crucially,
they function as feature extractors, capturing the meaningful latent representa-
tions of each data modality (Fig. 1.(A)). The next phase of our research involves
training the CXR encoder to align its latent representation with the CTPA’s.
To this end, we apply a novel approach that involves freezing both encoders
and deploying an additional generative network to synthesize a CTPA-like la-
tent representation from the CXR representation. This method is inspired by
the initial phase of DALL-E 2 [24], where a diffusion prior is used to generate
a CLIP image embedding given a text caption (Fig. 1.(B)). Finally, we apply
the generated CTPA embeddings to solve the PE classification problem (Fig.
1.(C)).

Fig. 1. Our three-phase method for PE classification from chest X-ray data. (A) Two
single modality encoders are trained separately for the CTPA and X-ray dataset. (B)
We align the X-ray encoding to their matching CTPA ones using a generative diffusion
prior model. The embeddings alignment is achieved using an L2 objective. (C) The
generated CTPA embeddings are used to solve the PE classification problem.

2.1 Unimodal Encoders

CTPA Encoder Our 3D CTPA dataset is limited in sample size and includes
a single binary label for the whole volume. These challenges guided us in se-
lecting the CTPA classifier architecture. This architecture choice follows SOTA
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methods for CTPA PE classification [13] and leverages powerful 2D pre-trained
backbones. Fig. 2 illustrates the two-step process of our CTPA model. First, we
employ a pretrained 2D image encoder to process axial slices of the 3D CT scan.
This model acts as a slice feature extractor, processing each CT slice into a latent
embedding, while capturing spatial relationships within each slice. We pass the
whole volume in a sequential slice-by-slice manner and extract the embedding
vector from each slice, resulting in an array of size: #2D slices x embedding size.
For this model we chose PENet [14], a 2D model for PE classification. Given the
absence of 2D labels in our dataset, this model cannot undergo fine-tuning and
must therefore remain frozen. Subsequently, a 2D sequential model is applied
to the sequence of processed slices for our final prediction, effectively captur-
ing temporal information across the 3D volume. Specifically, for this model we
use DINOv2 [20], which is one of the most powerful existing 2D foundation
model. DINOv2 is a self-supervised distillation method applied on Vision Trans-
formers (ViTs) [26]. The model’s self-supervised ViT features contain explicit
information about the semantic segmentation of an image and the extracted
features can be used for many downstream tasks. We treat each embedding as
a projected patch from an image, therefore we use DINOv2 but without the
patch projection layer. Preprocessing: We resized the CTPA scans to a spacial
resolution of 128×128 with varying number of axial slices. All scans were resam-
pled to a standard uniform voxel spacing of 1 mm in all dimensions. The pixel
values were converted to Hounsfield units (HU) and windowed to the range of
(−100HU,+900HU), to enhance the lower and upper boundaries of the area of
interest. Finally, the scans were cropped to the region of the lung area using lung
segmentation.

Fig. 2. CTPA encoder model. The pipeline is constructed from two networks: 1. The
first one is a 2D pretrained “of-the-shelf” image encoder. The 3D volume is fed through
this network slice by slice and concatenated to create a 2D representation of the 3D
volume. 2. A 2D sequential model for the final output prediction.

CXR Encoder We evaluated several pre-trained models for the CXR encoder,
using them both as fixed feature extractors without fine-tuning and by fine-
tuning them for the specific task of PE classification: 1. RadImageNet [19], a
ResNet-50 based model pretrained on millions of radiologic images. 2. Biomed-
CLIP Vision encoder [31]. The BiomedCLIP visual encoder, part of the Biomed-
CLIP foundation model, was pretrained on a biomedical dataset of 15 million
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figure-caption pairs from PubMed Central. It achieves state-of-the-art perfor-
mance across a variety of medical vision-language processing (VLP) tasks, in-
cluding cross-modal retrieval, image classification, and visual question answering.
3. DINOv2, which was previously discussed in the CTPA encoder section. Pre-
processing: The 2D CXR scans were normalized and resized to the size of 224 x
224 to match the expected size of the pretrained encoders.

2.2 Cross Modality Knowledge Distillation Using a Diffusion Prior

Our training dataset consists of paired exams – CTPA scans and corresponding
CXR images, from the same patient. For each pair, we denote the CTPA and
CXR embeddings as zCTPA and zCXR, respectively. Our generative model learns
a conditional prior, P (zCTPA | zCXR), that generates CTPA embeddings based
on the given CXR embeddings. Specifically, we model the continuous vector
zCTPA using a Gaussian diffusion model conditioned on the CXR embedding.

To achieve this, we train a decoder-only Transformer with a causal attention
mask on a sequence comprising the CXR image embedding, an embedding for
the diffusion timestep, the noised CTPA scan embedding, and a final embedding
whose output is used to predict the denoised CTPA embedding. The block di-
agram for the diffusion prior is depicted in Fig. 3. Rather than predicting the
noise residual as in Ho et al. [12], our model directly predicts the unnoised zCTPA

- fθ
(
z
(t)
CTPA, t, zCXR

)
. A simple L2 loss between the original CTPA embeddings

and predicted prior embeddings is used as an objective for the prior:

Lprior = E
t∼[1,T ], z

(t)
CTPA∼qt

∥∥∥fθ(z(t)CTPA, t, zCXR

)
− zCTPA

∥∥∥2 . (1)

Fig. 3. Diffusion Prior model. During training, a diffusion model takes an CTPA scan
embedding to which noise has been added, the matching CXR embedding, and an
embedding of the current time step. The system learns to use the CXR embedding to
remove the noise in successive time steps. At inference, it generates a CTPA embedding
by starting with pure noise and a CXR embedding and removing noise iteratively
according to that embedding.
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2.3 Dataset

Our cohort consisted of 898 patients from a single center, each of whom un-
derwent both a chest X-ray and a CTPA —within a 24-hour period. Board-
certified radiologists annotated the CT volumes with a binary label indicating
the presence or absence of pulmonary embolism (PE). The CTPA scans were
de-identified and, based on the radiologists’ reports, were categorized by ex-
perts to indicate whether PE was present, though no assessments of severity or
detailed segmentations were provided. For model evaluation, we employed strat-
ified sixfold cross-validation. Out of the total samples, 305 (34%) were identified
as positive for PE. This work was approved by the institutional review board
(IRB), with informed consent waived by the committee. All methods and exper-
iments were conducted in accordance with the relevant guidelines, regulations,
and the Declaration of Helsinki.

2.4 Training Strategy and Details

Throughout the diffusion-prior training, both the CTPA and CXR encoders were
kept frozen (i.e., no finetuning was performed). To address the issue of limited
data, we began by pretraining the diffusion model on RSPECT — the largest
publicly accessible annotated dataset for pulmonary embolism (PE), which in-
cludes more than 7,000 3D CTPA scans [5]. Because RSPECT contains only
CTPA volumes, we used synthetic CXR images or digitally reconstructed radio-
graphs (DRRs) for conditioning, generated via the DiffDRR [9] Python package
for differentiable X-ray rendering. All classification models were trained with a
batch size of 2 using the AdamW optimizer, at a learning rate of 1× 10−6. For
the diffusion-prior design, we adopted a Transformer architecture with a width
of 2048 and 24 layers. During inference, we applied Analytic DPM [3] with 64
strided sampling steps. At this phase, the batch size was set to 64, and the
learning rate was 1.1× 10−4. Training was conducted on a single NVIDIA RTX
A5000 GPU and completed within a few hours. Our model implementation was
adapted from DALLE-2 [24], with various custom modifications.

3 Experiments and Results

In the following, we detail the results of applying our proposed generation ap-
proach to enhance PE classification, including quantitative and qualitative eval-
uations of the generated samples. Additionally, we conduct an ablation study to
investigate the effects of different model architecture choices.

3.1 Using Generated Embeddings to Enhance PE Classification

We present the PE classification results obtained using the generated embed-
dings. We evaluated performance by feeding the generated latent representa-
tions into the matching layer of the CTPA model. We compare the performance
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against our baseline results which include using a single modality for classifi-
cation. Additionally, we compare them against several CMKD teacher-student
methods, in which the X-ray encoder weights are trained to mirror the CTPA
embeddings. We compare to the classic CKMD method by Hinton et. al [11], as
well as more recent CKMD methods [29,15,28]. In this model the CTPA encoder
remains frozen. Since no prior studies have attempted PE classification from
CXRs, we do not perform a comparative analysis with other existing methods.
Table 1 presents the results for this classification task. First, we note the base-
line results, where using the original CTPA data achieves an AUC of 0.858 [95%
CI: 0.77-0.94], while relying solely on CXR data yields a considerably lower AUC
of 0.691 [95% CI: 0.54-0.77]. When utilizing the CKMD methods, it is evident
that all methods significantly improve results compared to the original CXR
data. Among these approaches, our diffusion-prior model stands out. Using gen-
erated embeddings for classification, the model reaches an AUC of 0.824 [95%
CI: 0.72-0.93], coming close to the benchmark set by true CTPA data. Moreover,
compared to all other methods, our diffusion-prior model has significantly fewer
trainable parameters, offering both greater computational efficiency and easier
optimization.

Table 1. Comparing the average AUC scores (with a 95% confidence interval) of the
PE classification from CXR, CTPA and CMKD methods on our test set.

Model AUC Accuracy Specificity Sensitivity #Trainable Params
Baselines

CTPA only classifier 0.858 [0.77-0.94] 80.77 80.00 82.61 459M
CXR only classifier 0.691 [0.54-0.77] 71.79 70.91 73.91 126M

Cross Modality Knowledge Distillation Methods
Classic CKMD [11] 0.77 [0.65-0.84] 70.59 68.25 77.27 126M
Discom-kd [15] 0.75 [0.62-0.84] 72.1 73.02 69.56 350M
AFT-KD [29] 0.68 [0.55-0.81] 67.44 66.66 69.56 126M
ProtoKD [28] 0.8 [0.67-0.9] 74.42 80.95 56.52 126M
Our 0.824 [0.72-0.93] 73.27 73.02 73.91 49M
All AUC results are statistically significant with Delong-ROC test, with p ≤ 0.05

3.2 Mapping the Latent Space of Generated Samples

In Fig. 4 we present the visualization results of the t-SNE [18] of the latents
generated by the diffusion prior compared to their corresponding ground truth
samples from the test set. We compare the embeddings at the beginning (Fig.
4.(A)), middle (Fig. 4.(B)) and end (Fig. 4.(C)) of training stages. As can be
seen from the results, by the end of the training, the generated samples closely
follow the ground-truth samples.

3.3 Ablation study on Model Architecture Choices

We conducted ablation experiments, in which the architecture components and
training techniques are compared to measure their effect. The results are sum-
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Fig. 4. t-SNE visualizations results of generated latents compared to the ground truth
samples on the test set in the beginning (A), middle (B) and end of training (C). The
ground truth CTPA latent samples are marked in blue, the generated CTPA latent
samples are marked in orange and the original CXR latent samples in green.

marized in Table 2. Different CXR Embeddings. We compare the distillation
performance using various CXR (or student) embeddings, derived from three
distinct models. These models serve as the basis for our training process, pro-
viding the initial embeddings used as conditioning in our diffusion model. De-
tailed descriptions of these models can be found in Section 2.1. RadImageNet
and DINOv2 achieved similar results and outperformed the BiomedCLIP Vision
encoder. Embeddings Size. We investigated the model’s sensitivity to the vector
size of embeddings extracted from unimodal classifiers. In addition to the 512
baseline dimension we also tested 1024. Our results demonstrate a degradation in
terms of AUC when enlarging the embedding size. Loss. Beyond the traditional
correspondence loss of L2, we examined the addition of a binary cross-entropy
(BCE) classification loss and the combination of the two. As can be seen, in-
cluding this loss boosts our performance. In addition, we test three other losses
- attention-based feature matching loss [29], prototype knowledge distillation
which can not only distillates the pixel-wise knowledge of multi-modality data
to single-modality data, but can also transfer intra-class and inter-class feature
variations and contrastive loss that leverages both positive and negative cor-
respondence [4]. Effect of pretraining. Table 2 also demonstrates the effect of
pretraining on the RSPECT dataset. Incorporating this additional pretraining
step significantly improved our performance.

4 Conclusion and Discussion

The proposed method, which integrates CMKD with diffusion models, signif-
icantly advances PE classification from CXRs, delivering state-of-the-art per-
formance. Extensive experiments confirm that our approach outperforms tradi-
tional baselines in PE classification. As part of future work, we plan to improve
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Table 2. Classification results of the synthesized test set samples using different metrics
for different model variants.

Model Variant AUC Accuracy Specificity Sensitivity
CXR model

BiomedCLIP 0.7 [0.57-0.85] 70.93 74.60 60.87
RadImageNet 0.766 [0.63-0.9] 79.07 85.71 60.87

DINOv2 0.758 [0.63-0.88] 72.093 73.02 69.56

Embedding Size
d=1024 0.645 [0.49 - 0.8] 67.45 69.84 60.87

Loss
L2 + λLBCE 0.795 [0.68-0.92] 77.91 82.54 65.22

L2 + λAFTKD [29] 0.8 [0.68-0.91] 75.58 74.6 78.26
L2 + λProtoKD [28] 0.706 [0.58-0.81] 66.27 66.66 65.21
Contrastive loss [4] 0.66 [0.52-0.79] 67.44 69.84 60.87

Pretraining
RSPECT Pretraining 0.8 [0.67-0.91] 76.744 77.77 73.91

Full
Full 0.824 [0.72-0.93] 73.27 73.016 73.913

the clinical interpretability of our framework by incorporating Grad-CAM visual-
izations to highlight anatomically relevant features and better understand failure
cases. Additionally, the method’s potential to generalize to other cross-modality
applications paves the way for faster diagnoses, earlier treatment response, and
more accessible advanced diagnostic tools, all while reducing the need for large
labeled datasets.
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