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Abstract. Multi-site brain MRI heterogeneity caused by differences in
scanner field strengths, acquisition protocols, and software versions poses
a significant challenge for consistent analysis. Image-level harmonization,
leveraging advanced learning methods, has attracted increasing atten-
tion. However, existing methods often rely on paired data (e.g., human
traveling phantoms) for training, which are not always available. Some
methods perform MRI harmonization by transferring target-style fea-
tures to source images but require explicitly learning disentangled im-
age styles (e.g., contrast) via encoder-decoder networks, which increases
computational complexity. This paper presents an unpaired MRI harmo-
nization (UMH) framework based on a new image style-guided diffusion
model. UMH operates in two stages: (1) a coarse harmonizer that aligns
multi-site MRIs to a unified domain via a conditional latent diffusion
model while preserving anatomical content; and (2) a fine harmonizer
that adapts coarsely harmonized images to a specific target using style
embeddings derived from a pre-trained Contrastive Language-Image Pre-
training (CLIP) encoder, which captures semantic style differences be-
tween the original MRIs and their coarsely-aligned counterparts, elimi-
nating the need for paired data. By leveraging rich semantic style repre-
sentations of CLIP, UMH avoids learning image styles explicitly, thereby
reducing computation costs. We evaluate UMH on 4,123 MRIs from
three distinct multi-site datasets, with results suggesting its superiority
over several state-of-the-art (SOTA) methods across image-level compar-
ison, downstream classification, and brain tissue segmentation tasks.

Keywords: Brain MRI Harmonization - Style Translation - Diffusion.

1 Introduction

Brain MRI analysis using learning-based methods, particularly deep learning,
often suffers from limited data at individual acquisition sites, resulting in subop-
timal performance and poor generalizability across sites. To address this, multi-
site MRI pooling is increasingly used in neuroimaging studies to expand sample
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Fig. 1. Proposed UMH framework, containing (a) a diffusion-based coarse harmonizer
(DCH) that aligns multi-site MRIs into a unified domain while preserving anatomical
content, and (b) a CLIP-style guided fine harmonizer that aligns coarsely-harmonized
MRIs to a target style using a disentangled CLIP-style loss. This dual-stage process
achieves efficient MRI harmonization without explicit content-style disentanglement.
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size, enhance cohort diversity, and improve statistical power [1,22,25]. However,
variations in scanner vendors, scanning sequences, and field strength introduce
site-specific non-biological style differences (e.g., intensity, contrast, and signal-
to-noise ratio), which can hinder model training [12,13,19,28].

Data harmonization techniques have been developed to reduce site effects in
pre-extracted MRI features or directly normalize raw images. Existing feature-
level harmonization methods, such as ComBat [11] and ComBat-GAM [21], uti-
lize the Empirical Bayes framework that models and adjusts the site effect as
multiplicative and additive errors in data batches. However, these methods heav-
ily rely on the extracted features [1,4]. Existing image-level harmonization meth-
ods often use generative adversarial networks (GANSs) for cross-domain image
translation [0, 16, 18], which can be time-consuming and unstable to train. Some
approaches use multlple encoder- decoder networks to learn disentangled image
style and content representations [4,8,27,31], which is computationally heavy. In
addition, they often require paired MRIs, such as traveling phantom data from
the same subjects, which may not always be available in practice.

To this end, we propose an unpaired 3D brain MRI harmonization (UMH)
framework with a conditional latent diffusion model, guided by semantic style
embeddings derived from the contrastive language-image pre-training (CLIP)
encoder [29]. As shown in Fig. 1, UMH operates in two stages. In the first
stage, a conditional latent diffusion model (CLDM) is designed to coarsely align
multi-site input MRIs into a unified domain while preserving anatomical con-
tent information. The second stage involves fine-tuning the coarse harmonizer
to align the coarsely-harmonized MRIs to a specific target style guided by a
CLIP-based style loss, which leverages the difference of CLIP-style embeddings
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from the original MRIs and their coarsely-harmonized counterparts to model
disentangled style information without requiring paired MRIs. This dual-stage
process allows our UMH to leverage the stable training and generative power of
diffusion models [20] and the rich semantic representations of CLIP, achieving
efficient MRI style transfer without the need for separate encoders and decoders
to learn content and style information explicitly. The UMH is trained and evalu-
ated on three multi-site datasets with a total of 4,123 T1-weighted (T1w) MRIs
through three tasks. Experimental results demonstrate the superiority of UMH
over several state-of-the-art (SOTA) methods in aligning multi-site MRI styles
while preserving critical biological and anatomical features.

2 Proposed Method

Problem Formulation. Our goal is to align the style (e.g., intensity and con-
trast) of source MRIs with a target style while preserving their content (i.e.,
anatomical structures). We utilize a two-stage approach. (1) Coarse harmo-
nization: To reduce computational cost, we perform harmonization in a low-
dimensional latent space using a 3D autoencoder. The encoder E compresses
an MRI M into a latent map Z = E(M) € Re*"*wxd while the decoder D
reconstruct the MRI from the latent map Z. Here ¢, w, h, and d stand for
channel, width, height, and depth dimensions, respectively. To coarsely remove
site-specific style variations while maintaining anatomical content, we train a
conditional latent diffusion model (CLDM) @, which maps the latent represen-
tations of arbitrary MRIs to a unified latent domain U. The coarsely-harmonized
MRIs are then reconstructed as: My = D(Zy{C,Sy}) = Do®(Z{C,S}), where
C and S represent content and style information, respectively. Two novel image-
level constraints are designed to ensure image content preservation. (2) Fine
harmonization: The CLDM is fine-tuned to align coarsely-harmonized MRIs
to a specific target style. Given MR images from a source domain X and a
target domain T, we first map them to the unified domain U: for i € {X, T},
M,y = D o ® o E(M,;), generating coarsely-harmonized images. We then fine-
tune CLDM to translate the coarsely-harmonized source latent map to match
the target style: Zx_,7{Cx, St} = ®(Zy{Cx,Sy}). This translation is guided
by a disentangled CLIP-style loss, which captures style embedding differences
between each original MRI and its coarsely-harmonized counterpart. Finally,
the harmonized source image is reconstructed by decoding the translated latent
map Zx_1: Mx_7 = D(Zx_,7{C,Sr}). This two-stage process allows unseen
MRIs from a new site to be harmonized by only fine-tuning the second stage.

Diffusion-based Coarse Harmonizer (DCH). The DCH is trained to project
multi-site MRIs into a coarsely-aligned unified latent domain by leveraging en-
coder E and CLDM (see Fig. 1). To begin with, we first transform an input
MRI M to a low-dimensional latent code Z° = E(M) through the pre-trained
encoder E. The CLDM & is then trained to iteratively reconstruct Z° via for-
ward diffusion process (FDP) and reverse-diffusion (RDP) operations, governed
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by a Markov chain with a total of T" timesteps. During FDP, noise is gradually
added into Z° to create a noisy latent map Z* at each timestep t:

7' =\a; Z° + V1 —aze, e~ N(0,1), (1)

where € is the sampled noise, a;:=[]'_, ai, ar:=1— B, and f3; follows a predefined
variance schedule. To suppress the influence of image style and provide a content
condition, the original latent code Z° undergoes instance normalization (IN):
IN(Z°%) = (Z2° — u(Z2°))/0(Z°), where u(-) and o(-) compute the mean and
standard deviation across channels, effectively removing style information [15,

]. The resulting IN(Z°) can serve as the image content condition. The CLDM,
implemented as a time-conditioned 3D U-Net, takes the noisy latent map Z! at
timestep t as input and IN(Z°) as conditions to predict the noise ¢y, which is
compared against noise € added during training via the noise loss:

Ly = lle - es(2", £, IN(Z))3. (2)

During RDP, the CLDM employs a DDIM [23] sampling strategy, which itera-
tively denoises Z! over T, timesteps (t = T} : 0) to recover a coarsely-aligned
image Zy during inference, through the following:

24 =VE T ZutT=Ge160 (2 4IN(Z0))),  Zu=—A=(Z'—v/T=ares (2" 1IN(Z"))), (3)

where Zy is the one-step estimate of Z{. Typically, Z¢; is iteratively denoised
until ZY is obtained. During training, we use this one-step estimate and decode
it to a coarsely-aligned MRI My = D(Zy) for efficiency in this work.

We further employ two novel image-level constraints to enforce MR image
content preservation. This is achieved by incorporating a gradient loss L and
a perceptual loss Lp in CLDM. Specifically, the gradient loss is designed to
measure the difference between the gradient maps of My and M:

G(M) = %(th + VoM +VaM), Lc=||G(My) - GM)|3, (4)

where V denotes the gradient operation. The perceptual loss compares feature
maps extracted from a pre-trained MedicalNet ResNet-50 [7]:

; (%)

1
where v; denote feature maps extracted from the [-th layer of the ResNet-50
and \; controls the contribution of each layer. These losses defined at the image
level ensure content and semantic consistency during training, effectively guiding
CLDM to generate style-agnostic reconstruction while preserving anatomical
integrity. The hybrid loss for training our DCH is defined as L& = Ly+ Lo+ Lp.

CLIP-Style Guided Fine Harmonizer. In this stage, we fine-tune the DCH
to align a coarsely-aligned source MRI Mx .,y into a translated image Mx
with a style of a target site T. We leverage a pre-trained CLIP encoder [29] to
implicitly extract style embeddings and develop a hybrid disentangled CLIP-style
loss, eliminating the need for paired data or explicit style definitions.

Lp= Zz Al HTZJZ(M) - wl(MU)’
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Given a source MRI Mx and an unpaired target MRI Mp, we first map them
to the coarsely-aligned unified domain through FDP defined in Eq. (1) and RDP
in Eq. (3) while fixing the weight of the trained DCH:

Mx_ v =Do®oE(Mx), Mroy=Do®oE(Mr). (6)

The fine harmonizer is then trained to adapt Mx _,y to match the style of My
through other FDP and RDP processes. Unlike FDP in DCH, where random
noise is added to Z° through Eq. (1), we iteratively add learned noise from the
coarse harmonizer over T iterations (¢t = 0 : T¢) to get the noisy latent Z77:

Z% = Zxv = E(Mx_v), Z3%' =VanZ% + V1 - ae(Z',,IN(Z°), (7)

where 29( is the one-step estimate similar to ZU, see Eq. (3). RDP is then used
to iteratively denoise Z)T(f for t =T, : 0 times to yield the final translated feature:

Z)C?;,T = Z)T;f> Z§(7—1>T =V 6‘75*129(—>T + v 1- 5‘75*169(ZtvtaIN(Zo)))7 (8)

where 29( _, is the one-step estimate. After 7). iterative timesteps, we decode the
translated latent map Z$ _, ;- to obtain the translated MRI: Mx_,+ = D(Z%_, ).

To align source MRIs with target style, we extract embeddings for both target
and coarsely-harmonized source images via a pre-trained CLIP encoder ¥:

St =¥ (Mr) —¥(Mr-vu), Sxor=¥YMx_7)—¥(Mxov), 9)

Since Mrp_,y is the coarsely-harmonized unified version of the target MRI Mp
(with the same content), the difference between their CLIP-space embeddings
(i.e., ST) captures the target style information. Similarly, Sx_,r captures the
style of the harmonized source image. We define the style translation loss as:

Ls =[St = Sx>rly + (1 = (St - Sx=1) /(IS 1Sx>7ll)), (10)

where the 1st term is the [; distance in the CLIP-embedding space and the 2nd
term quantifies the directional discrepancy between two style embeddings.

To ensure style consistency, we further design a style reconstruction loss by
minimizing style embeddings of each target MRI and its harmonized counterpart:
Lr =St — Sr—7|;- The hybrid disentangled CLIP-style loss is defined as:

Lr=Ls+ LRg. (11)

By leveraging CLIP’s semantic-rich embeddings, our fine harmonizer effec-
tively translates source MRIs to the target style without requiring explicit image
style and content disentanglement learning, ensuring that anatomical content
remains unchanged. The two-stage training strategy used in the proposed UMH
allows the coarse harmonizer to be employed universally, requiring only the fine-
tuning stage for harmonizing unseen MRI data, providing superior flexibility.

Implementation. We use the 3D AutoencoderKL from MONAT [5], with three
groups of upsampling /downsampling 3D convolutional layers with residual blocks
({32, 64, 128} channels). CLDM is implemented as a time-conditioned 3D U-Net
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Fig. 2. Histograms of 22 SRPBS test MRIs across 11 sites, with COI as the target.

Table 1. Comparison between source site MRIs and corresponding target site (COI)
MRIs with matching subjects in the SRPBS test set (2 subjects across 11 sites).

Method \ SSIM ¢ PSNR 1 PCC 1 WD |
Baseline 0.879 + 0.033 22.020 & 4.282 0.979 + 0.008 0.041 = 0.026
CycleGAN [6] 0.868 =+ 0.026 21.410 % 1.652 0.973 £ 0.009 0.028 & 0.011
StyleGAN [10] 0.893 £ 0.028 23.498 & 1.756 0.975 =+ 0.009 0.005 + 0.002
HF [2] 0.890 + 0.024 23.411 & 1.427 0.976 & 0.011 0.016 = 0.006
CycleGANS3D [30] 0.937 £ 0.025 26.906 % 1.771 0.988 =+ 0.006 0.013 = 0.004
DDPM | 0.869 + 0.124 30.021 & 10.027 0.968 =+ 0.032 0.015 + 0.009
UMH (Ours) 0.933 £ 0.097 31.263 + 2.025 0.989 + 0.005 0.005 =+ 0.003

with a symmetric architecture: 2 upsampling/downsampling layers, 2 residual
blocks, 4 self-attention blocks, and a middle block ({32, 64, 64, 64} channels).
Both models are trained using the Adam optimizer with default settings and an
initial learning rate of 1 x 10~%. The variance scheduler 3 is empirically set to
increase linearly from 0.0015 to 0.0195. We empirically apply 7" = 1,000 noise
steps for the first coarse harmonization stage and choose T = 25,7, = 30 for
the second fine harmonization stage through hyperparameter grid search.

3 Experiments

Materials. Three datasets are utilized: (1) OpenBHB [9], with T1w MRIs from
3,984 healthy subjects across 58 sites; (2) SRPBS [24], with T1w MRIs from 9
traveling subjects across 11 sites; and (3) DWI-THP [17] with T1w MRIs from 5
subjects scanned across 8 sites. The OpenBHB dataset is divided into a training
set (3,227 MRIs) and a validation set (757 MRISs) for training the 3D autoencoder
and CLDM. The SRPBS and DWI-THP datasets are used for fine-tuning and
evaluation, with data splits detailed in the experimental section.

Competing Methods. We compare UMH with five SOTA image-level MRI
harmonization methods: CycleGAN [6], StyleGAN [16], CycleGAN-3D [30], Har-
monizing Flow (HF) [2], and DDPM [10]. We ensured consistent training data
and hyperparameters across all methods for a fair comparison.

Task 1: Histogram & Voxel-Level Comparison. This experiment evalu-
ates harmonization outcomes using SRPBS with ground-truth traveling phan-
tom data. We train on 77 MRIs (7 subjects across 11 sites) and test on 22 MRIs
(2 subjects across 11 sites). Each method harmonizes MRIs from 10 source sites
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Fig. 3. (a) harmonization results and difference (Diff.) and (b) segmentation maps with
White: accurate segmentation; Red: under-segmentation; Blue: over-segmentation.

Table 2. Results of AP and DSC metrics on GM and WM segmentation in SRPBS.

Method | Anatomical Preservation (AP) 1 | Dice Similarity Coefficient (DSC) 1
| GM WM Mean | GM WM Mean

CycleGAN 6] 0.986 + 0.017 0.994 £+ 0.004 0.990 4 0.009 | 0.880 4 0.046  0.920 + 0.030  0.900 =+ 0.038
StyleGAN [16] 0.992 + 0.006 0.994 + 0.005 0.993 4 0.004 | 0.886 + 0.043  0.924 +0.029  0.905 £ 0.036
HF 0.985+0.016  0.990 £ 0.009  0.987 £ 0.010 | 0.879 £ 0.046 0.918 +0.029  0.899 £ 0.038
CycleGAN3D [30] | 0.988 £0.019  0.992 4+ 0.006 0.990 & 0.010 | 0.886 +0.055 0.932 + 0.032 0.909 + 0.043
DDPM 0.992 +0.005 0.989 £+ 0.009 0.990 4+ 0.007 | 0.829 +0.168 0.847 +0.154 0.838 £ 0.161
UMH (Ours) 0.993 £ 0.010 0.992 +0.006 0.993 + 0.006 | 0.898 + 0.045 0.926 £ 0.030 0.912 £ 0.038

to a target site, selected as COI due to its highest mean peak-signal-to-noise ra-
tio (PSNR). Performance is assessed via histogram comparisons and voxel-level
metrics: PSNR, structural similarity index (SSIM), Wasserstein distance (WD),
and Pearson correlation coefficient (PCC) with raw source MRIs as Baseline.
The results in Fig. 2 show significant site-wise intensity variations in raw MRIs.
Our method effectively aligns the source histograms to the target’s, perform-
ing comparably to StarGAN without explicit style learning. Quantitative results
in Table 1 suggest that our UMH yields the highest PSNR and PCC, indicat-
ing superior voxel-level agreement, and the lowest WD, confirming effective style
alignment. It also achieves the second-best SSIM, demonstrating strong anatom-
ical preservation. Sample visualization in Fig. 3 (a) shows that UMH harmonized
MRI is closer to the target. These results highlight UMH’s ability to harmonize
MRIs while maintaining high image quality and anatomical fidelity.

Task 2: Brain Tissue Segmentation. We further evaluate anatomical preser-
vation via a brain tissue segmentation task. Each method is trained on 24 MRIs
(3 subjects across 8 sites) and harmonizes 16 MRIs from 2 additional subjects in
the DWI-THP dataset with site CCF as the target. We use FreeSurfer [3] to gen-
erate gray matter (GM) and white matter (WM) segmentation maps for original
and harmonized MRIs. Segmentation quality is assessed using the Anatomical
Preservation (AP) score [19], and Dice Similarity Coefficient (DSC). The results
in Table 2 show that our method achieves the highest performance for GM and
mean scores and the second-highest for WM. Figure 3 (b) further shows that
UMH yields fewer segmentation errors in the WM and GM tissue boundaries.
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Table 3. Site classification and age prediction results on harmonized OpenBHB MRIs.

Method | Site Classification | Age Prediction
|Balanced Accuracy (BAC) | F1l Precision (PRE) | Recall | | MAE | MSE |

Baseline 0.343 4+ 0.024 0.663 £ 0.023 0.757 +0.018 0.7324+0.019 | 5.295 £+ 0.260 47.446 £ 1.405
CycleGAN [6] 0.425 4+ 0.016 0.695 £ 0.027 0.770 4 0.030 0.739 4 0.020 | 6.625 £ 0.264 78.951 + 10.541
StyleGAN [16] 0.258 4 0.022 0.593 £ 0.012 0.662 = 0.015 0.651 +0.015 | 7.314 £0.494 85.716 + 12.905

2 0.342 4+ 0.011 0.665 £ 0.020 0.736 +0.021 0.723+£0.021 | 5.835+£0.221 57.009 £ 3.849
CycleGAN3D [30] 0.324 4 0.029 0.656 £+ 0.019 0.751 +0.019 0.723 +£0.017 | 5.901 £0.360 33.348 +9.671
DDPM [10] 0.166 4= 0.016 0.560 £0.013  0.545+0.007  0.535 £ 0.020 | 5.333 +0.258 48.548 £ 6.796
UMH (Ours) 0.129 +0.013 0.510 £0.035 0.625+0.024 0.522 + 0.042|5.240 + 0.141 52.022 + 5.052

0.940 ' gmssim --wp
0.930

0.920
0.910

 0.900
0.890
0.880 I
0.870 I
0.860 [ |
(a) UMH  UMH!  UMH-R  UMH-S (b) ; 5

Fig. 4. Results of (a) UMH and its variants, and (b) UMH with different Ty and T;..

Task 3: Site Classification & Brain Age Prediction. We evaluate UMH in
reducing site-related variations while preserving anatomical information through
site classification and brain age prediction. Each method is trained on OpenBHB
training data and applied to harmonize the validation data with Site 17 se-
lected as the target site. We extract features from these harmonized MRIs using
ResNet18 [14] with its final layer removed. A logistic regression, trained on 70%
of these deep features and tested on 30%, performs multi-class site classification,
and a ridge regressor predicts brain age. Both tasks are repeated 5 times for ran-
dom data partition, with mean4standard deviation results reported in Table 3.
Lower site classification results indicate better removal of site-related variations,
while lower age prediction error suggests superior anatomical feature preserva-
tion. Table 3 shows that UMH yields the lowest site classification performance in
BAC, F1, and Recall, effectively removing site-related features and maintaining
faithful anatomical integrity with slightly lower mean absolute error (MAE).

Ablation Study. We validate three key components by comparing UMH with
its three degraded variants: UMH-I (no image-level constraints during coarse
harmonizer training), UMH-R (without style reconstruction loss), and UMH-S
(without style translation loss). Results in Fig. 4 (a) show that UMH-I achieves
the lowest SSIM, indicating our image-level constraints help preserve structural
details. Additionally, UMH-S yields the highest WD, reflecting poor style align-
ment without style translation loss. UMH-R’s suboptimal performance further
underscores the importance of style reconstruction loss during fine-tuning.

Parameter Analysis. We conduct a hyperparameter grid search on Ty (forward
diffusion steps) and T,. (reverse diffusion steps), evaluating volume-level metrics
on the SRPBS test set. Results in Fig. 4 (b) show that our model performs better
with larger 7). than 7%, with peak performance when 7% = 25 and 7} = 30.
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Computational Cost Comparison. The proposed UMH employs a lightweight
latent-diffusion U-Net and a 3D autoencoder with 3.0M and 3.3M trainable pa-
rameters, respectively, totaling 6.3M—smaller than CycleGAN (28.3M), Style-
GAN (161.3M), CycleGAN3D (22.6M), and DDPM (10.3M), and comparable
to HF (5.7M). Training UMH on the SRPBS cohort takes about 6.5 hours (3.0h
for Stage 1 on OpenBHB; 2.5h for Stage 2 fine-tuning), which is faster than
CycleGAN (16.2h), StyleGAN (10.5h), HF (13.4h), and CycleGAN3D (12.4h),
and comparable to DDPM (5.5h). All models were trained on an H100 GPU.

4 Conclusion

We propose an unpaired MRI harmonization framework using a latent diffusion
model, which aligns MRIs into a unified latent space and translates them into the
target style via disentangled CLIP-based style losses. Leveraging the semantic-
rich CLIP embeddings, our method enables effective volume-level harmonization
without paired MRIs or auxiliary style encoders. Extensive experiments across
three multi-site datasets demonstrate UMH’s superiority in style alignment, site
variation removal, and anatomical preservation.
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