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Abstract. Deep learning (DL) methods have achieved great success in
medical image segmentation, but they are challenged to demonstrate ro-
bust performance across different datasets due to domain and modality
gaps. The Source-Free Domain Adaptation techniques adapt DL models
to generalize across domains without access to source data, and active
learning is implemented to actively query informative target samples to
fine-tune models, thus improving their generalization. However, only a
few Active Source-Free Domain Adaptation methods have been proposed.
Additionally, existing methods focus on same-modality adaptation and
lack mechanisms to address modality gaps, thus limiting their applicabil-
ity. To address these limitations, we propose a novel Active Source-Free
Cross-Domain and Cross-Modality Adaptation method for medical im-
age segmentation. This method adapts models across different domains
and modalities by employing a novel Active Test Time Sample Query
strategy to jointly implement Image Sensitivity Query (ISQ) and Organ
Heterogeneity Query (OHQ). ISQ is designed to evaluate samples’ image-
level modality agnostic informativeness, thus querying informative sam-
ples from different domains and modalities. OHQ is proposed to query
samples with large foreground diversity by measuring the uncertainty-
weighted organ boundary discontinuity and uncertainty-weighted organ
interior abnormality, thus avoiding the influence of modality-specific back-
ground noise. A Dynamic Image-to-Organ Scaling mechanism is proposed
to dynamically fuse the results of ISQ and OHQ for sample querying. We
evaluated our method on cross-domain and cross-modality volumetric
pancreas segmentation tasks. Our method outperformed other state-of-
the-art methods on adaptation from a CT domain to another larger CT
domain, T1-weighted MR and T2-weighted MR domains.

Keywords: Active Source-Free Domain Adaptation - Active Learning -
Medical Image Segmentation - Data Efficient Learning
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1 Introduction

Various deep learning (DL) based methods have achieved great success in au-
tomatic organ segmentation [10]. However, they are limited from generalizing
across different data sources due to domain gaps [18]. To address this issue,
Domain Adaptation methods have been proposed to enhance DL methods’ gen-
eralizability to the unlabeled target domain by leveraging knowledge from la-
beled source domain data [3]. However, strict data privacy regulations in clinical
practice may lead to the source data annotations’ inaccessibility and source
knowledge’s unavailability [17]. Thus, Source-free Domain Adaptation (SFDA)
techniques were proposed to adapt models to target domains without access to
the source data [8,21,20]. Moreover, utilizing a small set of data with annotations
to train models in the target domain improves their adaptation performance [6].
Active learning (AL) is implemented to determine the optimal way to select
samples for annotations, and these AL-based methods employ query strategies
to choose the most informative samples for training, thus enabling models to
achieve optimal performance with minimal annotation cost [4,5,11,24]. There-
fore, Active Source-Free Domain Adaptation (ASFDA) methods are designed
to adapt models to the target domain by actively querying informative samples
without knowledge of the source domain. However, only a few ASFDA meth-
ods have been proposed for medical image segmentation [18,9,19]. Additionally,
these methods investigated the adaptation of segmentation networks across do-
mains with the same modality by exploring predictive uncertainty and feature
similarity for querying. Thus, they lack mechanisms to utilize modality-agnostic
information or organ-specific characteristics to query samples from different do-
mains and modalities.

To tackle these limitations, we propose a novel Active Source-Free Cross-
Domain and Cross-Modality Adaptation method for medical image seg-
mentation. This method adapts segmentation models to generalize across dif-
ferent domains and modalities by employing a novel Active Test Time Sample
Query strategy. This strategy queries target samples to fine-tune models by
jointly implementing Image Sensitivity Query (ISQ) and Organ Hetero-
geneity Query (OHQ). ISQ is implemented to evaluate image-level modality-
agnostic informativeness of samples. The information level of each sample is
measured by calculating the KL divergence between its probabilistic predictions
and that of its modality-agnostic perturbations. OHQ is implemented to query
samples with large foreground diversity by measuring uncertainty-weighted
organ boundary discontinuity (OBD) and uncertainty-weighted organ
interior abnormality (OIA). OBD is proposed to measure the complexity of
boundary regions of the target organ, and OIA can measure the variability of
the interior regions of the target organ. Lastly, we propose a Dynamic Image-
to-Organ Scaling mechanism to dynamically fuse results of ISQ and OHQ to
score samples for querying. This mechanism is designed to prioritize image-level
informativeness for querying at the start of adaptation and gradually shift fo-
cus on organ-level informativeness by reducing relative weighting between ISQ
and OHQ. We evaluated the effectiveness of our method on cross-domain and
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Fig.1. Active Source-Free Cross-Domain and Cross-Modality Adaptation
for medical image segmentation. The segmentation network was trained on the source
domain S and adapted to the target domain T. Image Sensitivity Query (ISQ) was
evaluated by calculating the KL divergence between probabilistic predictions of unla-
beled target data T and their perturbations D9 . The Organ Heterogeneity Query
(OHQ) was evaluated by measuring uncertainty-weighted Organ Boundary Disconti-
nuity and uncertainty-weighted Organ Interior Abnormality. Subsequently, the results
of ISQ and OHQ were fused via Dynamic Image-to-Organ Scaling to generate query
scores for unlabeled data T{". Finally, top B samples were queried for annotations,
and these labeled target data 'JI‘ET) were utilized to re-train the network.

cross-modality 3D volumetric pancreas segmentation by adapting networks from
a CT source domain to another larger CT target domain, an MR T1w target do-
main, and an MR T2w target domain. Our method achieved superior adaptation
performance compared to other commonly used ASFDA methods.

2 Methods

2.1 Overall Method

Given a source domain S with A labeled data of a specific modality M, and
a target domain T with N; unlabeled data of another modality M, the goal of
the Active Source-Free Cross-Domain and Cross-Modality Adaptation is to de-
rive a segmentation model with source prior knowledge to minimize the risk on
the target domain without access to the source domain (Fig. 1). During adap-
tation, an Active Test Time Sample Query strategy is implemented to query
a small number of samples from the target domain for annotations to boost
the network’s performance on this domain and modality. Specifically, images
X, = {zs]1 <5 < Ng; M} and their labels Y = {y;]1 < s < N} from the
source domain S = {(X,Ys)} are utilized to train the segmentation network
Z(0;(X,Y)). Subsequently, we adapt this source-trained network with prior
knowledge .#(©; (X ;,Y s)) to the target domain without access to source data.
To maximize performance and minimize risks during this adaptation, an AL
procedure is implemented to query a small number of N4, informative samples
for annotations during test time (Naz, << A;). The budget of annotated target
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samples at each round is pre-defined as . At the beginning of the R-round query-
and-adaptation alternation, the network is source-trained as .# () (@; (X, Y))
from % (0; (X4, Ys)). At the first round r = 1, we actively query B instances
for annotations from the unlabeled target domain ']I‘LO) based on the Active Test
Time Sample Query strategy by implementing Image Sensitivity Query and Or-
gan Heterogeneity Query. These samples X1 = {x1, ..., x5} with their annota-
tions Y1 = {y1,...,ys} are collected to generate a labeled target domain Tl(l)
and utilized to optimize the model .Z(©)(@;(X,Y)) to FM(O;(X,Y)).
The target domain is split by T = T&‘”\T}”. In subsequent rounds (r > 1), B
samples X, = {z1, ..., x5} and their annotations Y,. = {y1, ..., yg} are queried to
generate ’]I‘l(r) = ']I‘l(r_l) U{(X,,Y,); M} to continuously optimize the network
as Z((@;(X,,Y,)), and the unlabeled set is updated by T = ']I‘Sf_l)\'ll‘l(r).
The iterations will be terminated until the labeled target samples reach the
pre-defined annotation budgets Nar.

2.2 Active Test Time Sample Query Strategy

Image Sensitivity Query. We implement an ISQ to query the most informa-
tive samples by evaluating their image-level modality-agnostic informativeness
(Fig. 1). Their informativeness is measured based on the model’s epistemic un-
certainty. Epistemic uncertainty arises from a model’s lack of knowledge and its
limitations in learning from data and generalizing to new situations. When a
model is less confident in its predictions for a sample, that sample is likely to
lie away from the distribution of learned knowledge, indicating it contains more
unlearned information. Such samples are thus more informative and valuable
for model training. ISQ is designed to quantify this uncertainty by measuring
the difference between the model’s original and perturbed probabilistic predic-
tions. Thus, querying high ISQ samples targets those that contribute most to the
model’s epistemic uncertainty and limit its generalization to the target domain.

For an image Z € RP*HXW its modality-agnostic perturbations can be
constructed by applying image texture transformation techniques D9 () to re-
sample it (g € {1,2,...,G}). If a sample is more informative to the network, its
perturbations will be more likely to be mispredicted. Thus, the informativeness
of a sample can be described by the differences between its prediction results
and the predictions of its perturbations. In our method, we applied four per-
turbation techniques (G = 4), including adding zero-centered additive Gaussian
noise with U(0,0.1) variance, Gaussian blurring by a U(0.5,1.5) kernel, bright-
ness enhancement, and contrast enhancement. The probabilistic predictions of
this image and its modality-agnostic perturbed predictions are generated from
the segmentation network as .#(@;Z) and .#(©; D9 (I)). The score of ISQ(Z)
is evaluated by calculating Kullback-Leibler (KL) divergence to measure the
distance between the probabilistic output of the original sample and that of
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modality-agnostic perturbations

g
ISQ(T) = Z [7(©;1)||7(©;D9(1))]
4
_ Z(6:1)
,zzj @Ilogg\(@D DT (1)

Organ Heterogeneity Query. Calculating image-level similarities among sam-
ples may misestimate their diversity since these methods may query samples
with a large diversity in the background while ignoring the heterogeneity of
organs, limiting networks from capturing organ-related information. Thus, we
implement an OHQ to query samples based on the diversity of foreground us-
ing two metrics: uncertainty-weighted organ boundary discontinuity and
uncertainty-weighted organ interior abnormality (Fig. 1).

Since most mis-segmented or over-segmented regions are within the bound-
aries of organs, OBD is most likely to indicate the complexity of boundary regions
and the difficulty of segmentation. Thus, querying samples with the largest or-
gan boundary discontinuity will select samples with the highest complexity of
boundary regions, thus significantly benefiting the network from learning diverse
foreground representations. Specifically, this OBD is evaluated by averaging the
Ll-norm difference between the intensity values of all boundary voxels belong-
ing to this organ and its neighbors. A specific organ C has N boundary voxel
points where i-th voxel has an intensity value U;, and each boundary voxel has
K neighbor voxels (from foreground and background) with the intensity value
U;. The number of voxels for a specific organ varies from sample to sample, and
to avoid its influence, the OBD®) is normalized by the number of boundary
voxels and their neighbor voxels. Subsequently, boundary regions in predictions
present a large uncertainty. Thus, after predictive entropy is normalized by the
number of boundary voxels A/ and the total number of neighbor voxels from
the background H, weighting OBD® with this voxel-wise normalized entropy
facilitates the assessment of potential false predictions

© 1 N+H 1 © ©
OBD®) = j\/+3'_LZ:pzlog1DZ N x ICZZHU = U (2)

=1 j=1

The organ from a specific sample may present different image intensity values
from others if it demonstrates large textural heterogeneity in the interior re-
gions. Additionally, the organ with large heterogeneity in the interior region
may show variations in image intensity values due to anatomical abnormality,
such as masses (cysts or tumors). Thus, evaluating OIA enables querying sam-
ples whose organs show large heterogeneity in interior regions. Specifically, after
boundary voxels are excluded, the number of interior voxels of a specific organ
C are counted as £ with i-th voxel of the intensity value V;. OIA is evaluated by
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calculating the variations in intensity values of interior voxels. OIA is normal-
ized by the number of interior voxels and weighted by the voxel-wise normalized
predictive entropy to assess potential false predictions in large structures

c L £
1 1 i Vi
OIA®) = ( 7 E Di 10gpi> (E E Vi — jﬁlj||1) (3)
i=1

i=1
The OHQ is calculated by adding the scores of OBD and OIA as

OHQ(Z) = OBD© + OIA©), (4)

Dynamic Image-to-Organ Scaling. We propose a Dynamic Image-to-Organ
Scaling mechanism to fuse ISQ(Z) and OHQ(Z) dynamically by changing their
relative weights during AL iterations r (1 < r < R). Firstly, we apply the Max-
Min normalization (Norm) to ensure the scores of ISQ(Z) and OHQ(Z) are in the
same range. Subsequently, we assign a larger weight to ISQ(Z) at the first several
rounds to query samples with more image-level modality agnostic information,
thus helping the network quickly capture domain-specific and modality-specific
knowledge. Subsequently, we gradually increase the weight for OHQ(Z) while
reducing that of ISQ(Z). This is designed to allow the network to focus on the
diversity of the target organ within the specific domain

QT) = (1 - R’“ﬂ) {Norm(ISQ(I))] + (R:J {Norm(OHQ(I))} (5)

3 Experiments

Datasets. We utilized four public pancreas segmentation datasets. The Na-
tional Institutes of Health (NIH) dataset comprises 80 contrast-enhanced 3D
abdominal CT scans with the annotations of normal pancreas [13]. The Medi-
cal Segmentation Decathlon (MSD) dataset consists of 281 abdominal CT scans
with annotations of pancreatic parenchyma and pancreatic mass [1]. The third
and fourth datasets consist of 162 T1-weighted (T1w) and T2-weighted (T2w)
abdominal MRI series with annotations of the pancreas from PanSegData [23].

Implementation details. The experiments were implemented using PyTorch
on NVIDIA Tesla A100 PCI-E Passive Single GPU with 40GB of GDDR5 mem-
ory. The 3D U-Net and Attention U-Net were used as segmentation networks
[12,14]. The combination of Dice loss and Cross-entropy loss was used as the loss
function. We trained the network on source data for 1000 epochs and fine-tuned
it on target data for 500 epochs in each iteration. The batch size was 2. The
SGD was utilized for optimization. The initial learning rate was set to 0.01 and
decayed in a polynomial scheduler with a power of 0.9. Raw volumes were z-score
normalized and scaled to the patches with the dimension of 64 x 224 x 224. The
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Table 1. Performance comparison between ours and other ASFDA methods when
adapting U-Net and Attention U-Net trained on NIH source data to MSD target data
(NIH — MSD). The results were reported as Mean+SD. Bold and underline represent
the best and the second best result. (Lower bound 0%: source-training without ADA;
Upper bound 100%: fully supervised training)

Low Bound Query Budgets (Number of Iterations) Upper Bound
0% 4% (r=1) 8% (r=2) | 12% (r=3) | 16% (r=4) | 20% (r=5) 100%
RAND [42.30+16.48| 72.624+18.21 | 79.53+£11.29 |81.58+10.24| 83.10£9.79 | 84.00+8.57 | 92.48+1.64
SENT [42.30416.48| 73.59+18.00 | 80.98+12.48 | 81.914+9.53 | 83.14+9.05 | 84.03+8.84 | 92.48+1.64

LC |42.30+16.48| 67.364+24.60 | 78.23+£15.42 |80.294+13.53|82.844+12.59(83.71+11.97| 92.48+1.64
SMAR [42.304+16.48| 67.534+24.10 | 78.68+14.14 [80.69+13.38|82.86+12.92|83.73+10.64| 92.48+1.64
Core-set [42.30+£16.48| 71.62+17.35 | 79.48+11.22 |81.36+11.79| 83.08+9.97 | 83.90+9.87 | 92.48+1.64
MREP |42.30+16.48| 69.894+25.60 | 79.10+17.43 |80.731+12.30|82.544+11.29(83.394+10.12| 92.48+1.64
BADGE |42.30+16.48| 74.60+18.86 | 81.49+12.93 | 82.70+8.12 | 84.56+8.79 | 84.84+8.87 | 92.48+1.64

Ours [42.30+£16.48|76.33+15.28|82.01+£10.48(83.28+7.54|85.02+9.11|86.12+7.90| 92.48+1.64
RAND [25.06+£12.85|15.914+22.64 | 9.00+12.57 | 7.62+£11.24 | 6.414+9.35 | 5.74+7.18 | 1.69+1.44
SENT [25.06+12.85|15.544+21.74 | 8.94+12.72 | 7.65+10.14 | 6.284+9.27 | 5.72+7.99 | 1.69+1.44

LC |25.06+12.85|19.28429.77 | 10.85+15.20 | 8.98+14.69 | 7.09+12.85 | 6.26+10.68 | 1.69+1.44
SMAR |25.064+12.85|19.45429.27 | 9.68+15.07 | 8.85+13.98 | 6.93+12.53 | 6.23+£10.20 | 1.69+1.44
Core-set [25.06+12.85] 17.30+£21.36 | 9.37+£10.21 | 7.25+£11.10 | 6.69+9.84 | 6.20+9.45 | 1.69+1.44
MREP |25.06+12.85|18.364+26.35 | 9.44+15.54 | 7.61+£11.44 | 7.30+£10.16 | 6.73+9.88 | 1.69+1.44
BADGE|25.064+12.85| 14.134+20.57 | 8.134+12.80 | 6.98+8.37 | 5.61+7.65 | 5.43+8.29 | 1.69+1.44

Ours {25.06+12.85|11.40+13.15| 7.36+10.08 | 6.10+8.02 | 5.17+7.23 | 4.68+6.47 | 1.69+1.44
RAND [42.10+16.40| 66.104+21.24 | 76.87+£17.21 |79.45+12.44|82.47+11.66|82.594+10.46| 92.00£1.91
SENT [42.104+16.40| 68.394+18.99 | 78.78+12.42 [81.15+10.69|83.18+10.30{ 83.92+9.05 | 92.00+1.91

LC |42.10+16.40| 65.014+24.99 | 77.14+15.54 |80.31+12.49|81.57+11.62(82.69+10.72| 92.00+1.91
SMAR |42.104+16.40| 65.73424.26 | 77.57+£15.09 [80.71+£12.45|81.794+11.07|83.284+10.33| 92.00+1.91
Core-set [42.10£16.40| 71.72+20.09 | 79.29+12.76 |81.45+10.99| 82.91+9.32 | 83.88+9.38 | 92.00+1.91
MREP |42.10+16.40| 62.314+26.05 | 74.12+17.12|78.16+13.23|80.524+12.18|81.83+12.00| 92.00+1.91
BADGE|42.104+16.40| 74.294+16.77 | 80.81+11.15 | 82.334+9.72 | 83.66+9.73 | 84.54+8.89 | 92.00+1.91

Ours [42.10£16.40{75.99+16.49|81.32+£10.09(83.35+8.39|84.93+8.36|85.79+8.10| 92.00+£1.91
RAND |25.35+16.2920.504+21.02 | 12.64+£17.94 | 9.54+£10.09 | 7.36+£10.24 | 7.48+9.87 | 1.76+1.50
SENT |25.354+16.29| 18.104+20.47 | 10.66+12.48 | 8.48+9.85 | 6.86+9.76 | 6.15+8.66 | 1.76+1.50

LC |25.35+16.29|21.55421.97 | 12.05+15.64 | 9.98+10.31 | 8.18+10.22 | 7.514£9.18 | 1.76+£1.50
SMAR |25.354+16.29{21.27+£21.17 | 11.294+15.77 | 9.60+10.08 | 8.134+10.02 | 7.21+£9.92 | 1.76+£1.50
Core-set [25.35+16.29] 16.10+19.86 | 9.62+£12.56 | 7.65+9.89 | 7.05+9.47 | 6.36+9.05 | 1.76+1.50
MREP |25.35+16.29|22.51428.35 | 13.75+18.54 |10.054+11.26{ 9.13+11.22 | 7.86+10.09 | 1.76+1.50
BADGE|25.354+16.29| 14.814+21.10 | 8.924+10.86 | 7.38+9.27 | 6.48+9.87 | 5.954+8.17 | 1.7641.50

Ours {25.354+16.29|12.89+18.72| 7.55+9.78 | 6.42+8.49 |6.15+11.85| 5.42+6.69 | 1.76+1.50

Nets|Mtc|Methods

DSC (1)

U-Net

95HD ({)

DSC (1)

Attention U-Net

95HD ({)

segmentation performance was evaluated using two metrics (Mtc): Dice Similar-
ity Coefficient (DSC;%) and 95th percentile Hausdorff Distance (95HD;mm). We
set B =4% and R = 5 in the NIH-to-MSD adaptation, and B = 5% and R = 5
in the CT-to-T1w and CT-to-T2w adaptation. To ensure the reliability of the
experimental results, we performed the experiments three times and recorded
the average value for each setting.

Experimental results. We compared the performance of our method with
seven well-known active query methods, including Random Selection (RAND),
Softmax Entropy (SENT) [16], Least Confidence (LC) [7], Softmax Margin
(SMAR) [16], core-set approach (Core-set) [15], Maximum Representation
(MREP) [22], and Batch Active Diverse Gradient Embeddings (BADGE) [2].
Our method outperformed other methods on NIH-to-MSD adaptation (Table 1),
CT-to-T1w, and CT-to-T2w adaptations (Table 2 and Fig. 2). Specifically, when
U-Net and Attention U-Net were adapted from the NIH CT domain to the MSD
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Table 2. Performance comparison between ours and other ASFDA methods when
adapting U-Net trained on NIH CT source data to PanSegData Tlw (CT — Tlw)
and T2w (CT — T2w) MR target data. The results were reported as Mean+SD. Bold
and underline represent the best and the second best result. (Lower bound 0%: source-
training without ADA; Upper bound 100%: fully supervised training)

Low Bound Query Budgets (Number of Iterations) Upper Bound
0% 5% (1=1) | 10% (1=2) [ 15% (r=3) | 20% (r=4) | 25% (r=5) 100%
RAND | 3.83+10.21 | 60.45+19.64 | 69.58+19.84 | 72.96+19.10 | 76.11+£19.32 | 78.78+£18.49 | 95.17+1.17
SENT | 3.83£10.21 | 61.49£19.96 | 70.234+19.53 | 74.38+18.80 | 76.32+18.80 | 79.02+18.73 | 95.17£1.17

LC 3.831+10.21 | 57.54+22.12 | 67.26+£21.14 | 72.14422.20 | 74.384+21.50 | 77.93£19.67 | 95.17+1.17
SMAR | 3.83+10.21 | 58.97421.78 | 67.71£20.50 | 72.70+20.68 | 75.42+19.60 | 78.41+18.29 | 95.17+1.17
Core-set | 3.83+10.21 | 63.53+18.55 | 73.09+17.82 | 77.184+17.35 | 79.32+£16.23 | 81.154+15.32 | 95.17+1.17
MREP | 3.83+10.21 | 57.03+27.91 | 68.92+20.94 | 73.70£19.65 | 76.28+19.94 | 78.52+18.89 | 95.17+1.17
BADGE| 3.83+10.21 | 62.46+19.31 | 70.254+19.52 | 74.794+19.51 | 76.89+18.02 | 79.36+17.72 | 95.17+1.17
Ours | 3.83£10.21 {65.07+17.76|74.95+16.29|78.38+15.66/81.01+£15.59|83.09+15.07| 95.17+1.17
RAND |77.82+28.97( 15.89+15.45 | 9.25+13.66 | 7.54+9.19 | 6.80+9.71 | 5.32+8.62 1.00+0.00
| SENT |77.82428.97| 14.64+16.12 | 9.03£10.79 | 6.96+10.33 | 5.94£10.55 | 5.28£10.08 | 1.00+0.00
=/ LC 77.824+28.97|16.06£17.12 | 11.05£15.57 | 8.64£16.33 | 6.96+12.12 | 6.30+£11.90 1.00£0.00
SMAR |77.82+28.97| 16.30+18.67 | 10.33+14.49 | 8.11+16.07 | 6.86+11.29 | 6.26+10.73 | 1.00+0.00
Core-set |77.82+28.97| 12.734+13.95 | 8.26+10.13 | 5.64+6.80 | 5.52+6.96 | 4.73+7.63 1.00+0.00
MREP |77.82+28.97|16.92+21.79 | 9.33+13.75 | 7.014+9.23 6.36+9.33 6.2148.82 1.00+£0.00
BADGE|77.824+28.97| 13.18+14.59 | 8.69+10.09 | 6.66+8.55 | 5.77+8.80 | 5.11+8.32 1.00+0.00
Ours |77.824+28.97|11.62+12.48| 6.76+9.81 | 5.61+5.62 | 4.80+7.29 | 4.01+7.03 1.00+0.00
RAND | 2.30+7.19 |43.59422.82|60.17+27.45 | 68.48+19.02 | 73.16+17.45 | 76.28+15.86 | 95.15+1.37
SENT | 2.30+7.19 |46.32+22.01 | 63.49+18.30 | 69.47+20.48 | 73.83+16.91 | 77.45+15.32 | 95.15+1.37

LC 2.30£7.19 |41.14+27.95|59.11£20.92 | 67.47+18.53 | 72.58+16.76 | 75.88£16.70 | 95.15+1.37
SMAR | 2.30+7.19 |41.82423.48 | 59.61+19.57 | 67.68+17.32 | 73.00+£16.13 | 75.95+15.16 | 95.154+1.37
Core-set | 2.30£7.19 |53.534+19.95 | 66.69+17.39 | 71.33+16.55 | 75.23+15.75 | 78.43+14.14 | 95.15+1.37
MREP | 2.30£7.19 |44.39+23.58|61.144+19.47 | 68.68+18.07 | 73.64+£19.38 | 76.454+15.04 | 95.15+1.37
BADGE| 2.30+7.19 |50.234+20.68 | 64.65+19.35 | 71.244+17.48 | 74.954+15.62 | 77.69+14.65 | 95.15+1.37

Ours 2.30+£7.19 |58.41+19.75/69.62+16.54|76.57+14.62|78.62+-14.89|80.13+14.18| 95.15+1.37
RAND [65.80+49.65| 24.274+21.58 | 14.57+£20.57 | 9.97+£11.58 | 8.42+11.25 | 6.70£8.77 1.00+£0.08
SENT (65.80+49.65|20.07+20.22 | 12.65+14.01 | 9.38+14.51 | 7.444+10.93 | 5.83+8.62 1.00+0.08

LC 65.80+49.65| 25.624+27.06 | 15.24+15.74 | 11.27+12.59 | 9.87+10.90 | 7.21+9.49 1.00+0.08
SMAR |65.80+£49.65| 25.044+21.28 | 14.78+15.89 | 10.69+£11.74 | 9.86+10.59 | 6.76+9.07 1.00+0.08
Core-set |65.80+49.65| 16.79+15.38 | 10.45+13.33 | 7.67+10.46 | 5.92+9.97 | 5.10+8.20 1.00+0.08
MREP (65.804+49.65]23.19+24.26 | 13.33+£15.38 | 9.67+£13.60 | 8.10£10.13 | 6.56+8.69 1.00£0.08
BADGE|65.80+49.65( 17.11+£17.73 | 12.64+16.49 | 8.60+11.14 | 6.80+9.82 5.33+8.66 1.00+0.08

Ours |65.80+49.65/15.55+14.13| 8.73+12.16 | 6.74+11.30 | 4.824+9.78 | 4.70+8.22 | 1.00+0.08

Tasks|Mtc|Methods

DSC (1)

CT— MR Tlw

95HD

DSC (1)

CT— MR T2w

95HD (})

CT domain, our method achieved better performance than other ASFDA meth-
ods at each round. Additionally, our method adapted the U-Net and Attention
U-Net to achieve over 93.12% and 93.25% upper bound performance with only
20% samples queried. Moreover, when U-Net was adapted from the NIH CT
domain to the Tlw MR and the T2w MR domains, our method demonstrated
superior performance than other methods at each round. Additionally, U-Net
achieved 87.31% and 84.21% upper bound performance with only 25% samples
queried for cross-modality adaptation by our method.

Ablation study. To evaluate the effectiveness of the Active Test Time Sample
Query strategy, we compared the performance of different strategies on the CT-
to-T1w when querying 25% samples (Table 3). Specifically, our method achieved
the best performance, demonstrating the effectiveness of our query strategy.
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CT-Tiw

CT-T2w

Ground Truth Source Trained RAND SENT Core-set BADGE Ours

Fig. 2. Qualitative comparison among results of source-trained network before adap-
tation and networks fine-tuned by 25% samples queried by other and our methods.

4

Table 3. The results of ablation study on the Active Test Time Query strategy.

Strategies 1SQ OHQ ISQ+OHQ |ISQ+OHQ+Scaling

DSC (1) [80.36+17.02|78.85+18.32(82.58+15.83 83.09+15.07

95HD (J)| 4.95+8.21 | 5.21+8.86 | 4.24+7.68 4.01+7.53
Conclusion

We proposed an Active Source-Free Cross-domain and Cross-modality Adapta-
tion method for medical image segmentation by employing an Active Test Time
Query strategy. Our method achieved superior performance on cross-domain and
cross-modality volumetric pancreas segmentation compared to other methods.
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